Tag Archives: saving machine

China Best Sales Drive Button Energy Saving Spot Spin Automatic Riveting Machine with Hot selling

Product Description

Product Parameter

Hydraulic Orbital Riveting Machine
Model THW-12-25 THW-16-28
Riveting Ability Solid:1-12MM
Hollow:2-25MM(subject to A3 steel)
Hollow:3-28MM(subject to A3 steel)
Rivet Length 230MM 230MM
Cylinder Stroke (Fine adjustment) / 35MM
Deep Throat 200MM 200MM
Power 1HP/2HP 380V 2.2KW 1400r/min
Hydraulic Pump Motor / 2.2KW*380V*50HZ
Max Force 430-1650KG 430-5500KG
Mechanical Height 1700MM 1800MM
Working Area 140*240MM 170*270MM
Net Weight 280KG 550KG
Spindle Motor / 2.2KW*380V*50HZ
The Electromagnetic Valve / D5-02-2B2-A25-R


Pneumatic Orbital Riveting Machine
Model THW-9-20 THW-5-8
Voltage(V) 380 380
Power(KW) 0.75 0.18
Spindle Stroke 35MM /
Riveting Ability(MM) Solid:2-8     Hollow:1-20 Solid:4    Hollow:8
Applicable Air Pressure(KG/M2) 2-7 0.3-0.7
Max Riveting Pressure(KG/M2) 460-1100 4.7kn
Mechanical Height(Adjustable) 1050-1170 Adjustable
Max Length of Rivet 150 /
Deep Throat 125 72.5
Workbench size 185*320 285*260
Weight(KG) 160 70
Rotation speed(R.P.M) 1400 /

Product Feature

. The fuselage structure is optimized by finite element analysis, which strengthens the rigidity of the structure and makes
    riveting more stable.
. The spindle core has high processing accuracy, the motor runs smoothly, the rivet side force is small, and the rivet surface is
. The hydraulic system runs stably, has good sealing effect and long maintenance period.
. Rivet head has high quality, hardness up to HRC62 and long service life.


1.What is the difference between a pneumatic orbital riveting machine and a hydraulic orbital riveting machine?
The basic structure of the 2 is the same.
Pneumatic orbital riveting machine: A cylinder(equipped with solenoid valves and air source processing components)
Hydraulic orbital riveting machine: Hydraulic cylinder (hydraulic system includes overflow valve, hydraulic pump, throttle valve, oil circuit block)

2.Is a pneumatic orbital riveting machine better, or a hydraulic orbital riveting machine?
Both machines have their own advantages.
Pneumatic orbital riveting machine: Energy saving and environmental protection
Hydraulic orbital riveting machine:  Stable riveting pressure

3.The scope of application of the 2 machines?
Pneumatic orbital riveting machine: Automobile, train, ship, aviation industry and other sheet metal fastening and connection structure industries
Hydraulic orbital riveting machine: Various auto parts, hardware tools, sports equipment, travel goods

4. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;

5.what can you buy from us?
Fastener Insertion Machine,Self clinching Press,Riveting Machine,Spot Welder,Clinching Fasteners,Orbital Riveting Machine etc.

6. why should you buy from us not from other suppliers?
RSM Machinery CO.,ltd includes fastener insertion machine, self clinching machine, hydraulic steel/ironworker, turret grinding
machine ,self clinching system , production line as well as other different kinds of machine tooling and accessories.

7. what services can we provide?
Accepted Delivery Terms: FOB,CIF,EXW,Express Delivery;
Accepted Payment Currency:USD,EUR,HKD,CNY;
Accepted Payment Type: T/T,L/C,Cash;
Language Spoken:English,Chinese

What You Should Know About Axle Shafts

There are several things you should know about axle shafts. These include what materials they’re made of, how they’re constructed, and the signs of wear and tear. Read on to learn more about axle shafts and how to properly maintain them. Axle shafts are a crucial part of any vehicle. But how can you tell if 1 is worn out? Here are some tips that can help you determine whether it’s time to replace it.

Materials used for axle shafts

When it comes to materials used in axle shafts, there are 2 common types of materials. One is carbon fiber, which is relatively uncommon for linear applications. Carbon fiber shafting is produced by CZPT(r). The main benefit of carbon fiber shafting is its ultra-low weight. A carbon fiber shaft of 20mm diameter weighs just 0.17kg, as opposed to 2.46kg for a steel shaft of the same size.
The other type of material used in axle shafts is forged steel. This material is strong, but it is difficult to machine. The resulting material has residual stresses, voids, and hard spots that make it unsuitable for some applications. A forged steel shaft will not be able to be refinished to its original dimensions. In such cases, the shaft must be machined down to reduce the material’s hardness.
Alternatively, you can choose to purchase a through-hardened shaft. These types of axle shafts are suitable for light cars and those that use single bearings on their hub. However, the increased diameter of the axle shaft will result in less resistance to shock loads and torsional forces. For these applications, it is best to use medium-carbon alloy steel (MCA), which contains nickel and chromium. In addition, you may also need to jack up your vehicle to replace the axle shaft.
The spline features of the axle shaft must mate with the spline feature on the axle assembly. The spline feature has a slight curve that optimizes contact surface area and distribution of load. The process involves hobbing and rolling, and it requires special tooling to form this profile. However, it is important to note that an axle shaft with a cut spline will have a 30% smaller diameter than the corresponding 1 with an involute profile.
Another common material is the 300M alloy, which is a modified 4340 chromoly. This alloy provides additional strength, but is more prone to cracking. For this reason, this alloy isn’t suited for street-driven vehicles. Axle shafts made from this alloy are magnaflushed to detect cracks before they cause catastrophic failure. This heat treatment is not as effective as the other materials, but it is still a good choice for axle shafts.


There are 3 basic types of axle shafts: fully floating, three-quarter floating, and semi-floating. Depending on how the shaft is used, the axles can be either stationary or fully floating. Fully floating axle shafts are most common, but there are exceptions. Axle shafts may also be floating or stationary, or they may be fixed. When they are stationary, they are known as non-floating axles.
Different alloys have different properties. High-carbon steels are harder than low-carbon steels, while medium-carbon steels are less ductile. Medium-carbon steel is often used in axle shafts. Some shafts contain additional metals, including silicon, nickel, and copper, for case hardening. High-carbon steels are preferred over low-carbon steels. Axle shafts with high carbon content often have better heat-treatability than OE ones.
A semi-floating axle shaft has a single bearing between the hub and casing, relieving the main shear stress on the shaft but must still withstand other stresses. A half shaft needs to withstand bending loads from side thrust during cornering while transmitting driving torque. A three-quarter floating axle shaft is typically fitted to commercial vehicles that are more capable of handling higher axle loads and torque. However, it is possible to replace or upgrade the axle shaft with a replacement axle shaft, but this will require jacking the vehicle and removing the studs.
A half-floating axle is an alternative to a fixed-length rear axle. This axle design is ideal for mid-size trucks. It supports the weight of the mid-size truck and may support mid-size trucks with high towing capacities. The axle housing supports the inner end of the axle and also takes up the end thrust from the vehicle’s tires. A three-quarter floating axle, on the other hand, is a complex type that is not as simple as a semi-floating axle.
Axle shafts are heavy-duty load-bearing components that transmit rotational force from the rear differential gearbox to the rear wheels. The half shaft and the axle casing support the road wheel. Below is a diagram of different forces that can occur in the axle assembly depending on operating conditions. The total weight of the vehicle’s rear can exert a bending action on the half shaft, and the overhanging section of the shaft can be subject to a shearing force.

Symptoms of wear out

The constant velocity axle, also called the half shaft, transmits power from the transmission to the wheels, allowing the vehicle to move forward. When it fails, it can result in many problems. Here are 4 common symptoms of a bad CV axle:
Bad vibrations: If you notice any sort of abnormal vibration while driving, this may be a sign of axle damage. Vibrations may accompany a strange noise coming from under the vehicle. You may also notice tire wobble. It is important to repair this problem as it could be harmful to your car’s handling and comfort. A damaged axle is generally accompanied by other problems, including a weak braking response.
A creaking or popping sound: If you hear this noise when turning your vehicle, you probably have a worn out CV axle. When the CV joints lose their balance, the driveshaft is no longer supported by the U-joints. This can cause a lot of vibrations, which can reduce your vehicle’s comfort and safety. Fortunately, there are easy ways to check for worn CV axles.
CV joints: A CV joint is located at each end of the axle shaft. In front-wheel drive vehicles, there are 2 CV joints, 1 on each axle. The outer CV joint connects the axle shaft to the wheel and experiences more movement. In fact, the CV joints are only as good as the boot. The most common symptoms of a failed CV joint include clicking and popping noises while turning or when accelerating.
CV joint: Oftentimes, CV joints wear out half of the axle shaft. While repairing a CV joint is a viable repair, it is more expensive than replacing the axle. In most cases, you should replace the CV joint. Replacement will save you time and money. ACV joints are a vital part of your vehicle’s drivetrain. Even if they are worn, they should be checked if they are loose.
Unresponsive acceleration: The vehicle may be jerky, shuddering, or slipping. This could be caused by a bent axle. The problem may be a loose U-joint or center bearing, and you should have your vehicle inspected immediately by a qualified mechanic. If you notice jerkiness, have a mechanic check the CV joints and other components of the vehicle. If these components are not working properly, the vehicle may be dangerous.


There are several points of concern regarding the maintenance of axle shafts. It is imperative to check the axle for any damage and to lubricate it. If it is clean, it may be lubricated and is working properly. If not, it will require replacement. The CV boots need to be replaced. A broken axle shaft can result in catastrophic damage to the transmission or even cause an accident. Fortunately, there are several simple ways to maintain the axle shaft.
In addition to oil changes, it is important to check the differential lube level. Some differentials need cleaning or repacking every so often. CZPT Moreno Valley, CA technicians know how to inspect and maintain axles, and they can help you determine if a problem is affecting your vehicle’s performance. Some common signs of axle problems include excessive vibrations, clunking, and a high-pitched howling noise.
If you’ve noticed any of these warning signs, contact your vehicle’s manufacturer. Most manufacturers offer service for their axles. If it’s too rusted or damaged, they’ll replace it for you for free. If you’re in doubt, you can take it to a service center for a repair. They’ll be happy to assist you in any aspect of your vehicle’s maintenance. It’s never too early to begin.
CZPT Moreno Valley, CA technicians are well-versed in the repair of axles and differentials. The CV joint, which connects the car’s transmission to the rear wheels, is responsible for transferring the power from the engine to the wheels. Aside from the CV joint, there are also protective boots on both ends of the axle shaft. The protective boots can tear with age or use. When they tear, they allow grease and debris to escape and get into the joint.
While the CV joint is the most obvious place to replace it, this isn’t a time to ignore this important component. Taking care of the CV joint will protect your car from costly breakdowns at the track. While servicing half shafts can help prevent costly replacement of CV joints, it’s best to do it once a season or halfway through the season. ACV joints are essential for your car’s safety and function.

China Best Sales Drive Button Energy Saving Spot Spin Automatic Riveting Machine   with Hot sellingChina Best Sales Drive Button Energy Saving Spot Spin Automatic Riveting Machine   with Hot selling

China Standard Horizontal Automatic Energy Saving Servo Drive Pet Plastic Preform Making Injection Blow Moulding Machine with Good quality

Product Description

Horizontal Automatic Energy Saving Servo Drive PET Plastic Preform Making Injection Blow Moulding Machine

Our automatic plastic perform injection molding machine adopts a thermal flow system and high-pressure injection molding to get high precision of bottle mouth, bottleneck and screw. It can inject all kinds of plastic parts such as bottle preform, engineering plastic, UPVC, PVC, PE pipes fitting, pomponents for automotive, household, eletronics,  telecommunication, etc.

Advantages of Our Plastic Preform Injection Molding Machine

1. Even the mainframe has no height limit for the workshop to be placed due to its low fuselage.

2. The product can be automatically dropped occasions, do not need to use a manipulator can also achieve automatic molding.

3. Because of the low fuselage, it is convenient for feeding and maintenance.

4. The mold shall be installed by crane.

5. The molding products are easy to be collected and packed by the conveyor belt when multiple sets are arranged in parallel.
Details of Our Plastic Preform Injection Molding Machine

Technical Parameters

Item PM-1300A PM-1600A PM-2000A
screw diameter (mm) 35 40 45 45 50 55 50 55 60
screw l/d ratio (l/d) 24 21 18.7 23.3 21 19.1 23.1 21 19
theoretical shot volume (mm³) 173 226 286 358 442 534 491 594 707
shot weight (ps) (g) 158 206 260 326 402 486 447 540 643
injection pressure (mpa) 235 142 142 219 178 147 215 178 149
theoretical injection rate (ps) (g/s) 110 181 181 142 175 212 145 175 208
plasticising capacity (g/s) 13.8 19.7 27.1 20.1 26.5 34.2 22.5 28.7 35.4
max screw rotate speed (r/min) 250 200 170
injection stroke (mm) 180 225 250
Max.Clamping force(kn) 1300 1600 2000
Max.Opening stroke (mm) 400 460 500
space between (mm) 420*420 480*480 505*505
mould height (mm) 160-440 180-500 190-530
Max.Daylight (mm) 840 960 1030
pump motor power (kw) 13 15 18.5
heating power (kw) 9.2 13.6 16.6
heating zone 4 4 4
net weight 4.3 5.6 6.4
oil tank capacity (t) 360 420 420
intenational designation (l) 1300-410 1600-785 2000-1060

Our Service
Customized service
We can design the machines according your requirements(material,power,filling type,the kinds of the bottles,and so on),at the same time we will give you our professional suggestion,as you know,we have been in this industry for many years.

After-sales service
1.We will delivery the machine and provide the bill of load on time to make sure you can get the machine quickly 
2.When you finish the Preparation conditions,our fast and professional aftersales service engineer team will go to your factory to install the machine,give you the operating manual,and train your employee until they can operate the machine well. 
3.We often ask feedback and offer help to our customer whose machine have been used in their factory for some time.
4.We provide 1 year warranty 
5.Well-trained & experienced staff are to answer all your inquiries in English and Chinese
6.24 hours for engineer response (all services part 5days in customer hand by Intl’ courier). 
7.12 Months guarantee and life-long technical support.
8.Your business relationship with us will be confidential to any third party. 
9.Good after-sale service offered, please get back to us if you got any questions.

Quality Control
We have separate quality control department, which make sure the raw materials are qualified,also ensure the machine running smoothly. 
If you want to know more information about the product,Send inquiry to us, we will solve any of your problems and send you running video for reference.

Packaging & Shipping

Company Information
HangZhou Proman Machine Co., Ltd. is a production manufacturer and exporter in China, specialized in water treatment plants,beverage filling machine, packing machine, bottle blowing machine, injection moulding machine and spare parts of filling line.

Our factory was established in the year of 1998, with the long history of accumulated experience in filling machine industry in south ZheJiang . There are many development engineers of filling machine in our company. We devote ourselves to the development, research and production of liquid food and beverage packing and filling industry.

Besides, we have our own designs for the bottles.

Proman Machine cooperated with many customers in recent years, we win the trust of customers from our high-quality products. And we are looking forward to the future cooperation with you if our products can impress you deeply!


1. Where is your factory? 
Our Factory is located in HangZhou City, 2 hours drive from ZheJiang and 1 hour drive from HangZhou(airplane & high-speed rail). If you arrive at ZheJiang or HangZhou, we can pick you up to visit our factory.

2. Do you have any technical supports with your Plastic Preform Injection Molding Machines? 
Yes, We have a professional team of engineers who owned many installation, debug and training experiences abroad, are available to service machinery overseas. 

3. What’s your guarantee or the warranty of the quality if we buy your machines? 
We offer high quality machines with 1 year warranty and supply life-long technical support. 
You’re always welcome to visit our company. If you have any interest on our products. Please do not hesitate to contact us.

Calculating the Deflection of a Worm Shaft

In this article, we’ll discuss how to calculate the deflection of a worm gear’s worm shaft. We’ll also discuss the characteristics of a worm gear, including its tooth forces. And we’ll cover the important characteristics of a worm gear. Read on to learn more! Here are some things to consider before purchasing a worm gear. We hope you enjoy learning! After reading this article, you’ll be well-equipped to choose a worm gear to match your needs.
worm shaft

Calculation of worm shaft deflection

The main goal of the calculations is to determine the deflection of a worm. Worms are used to turn gears and mechanical devices. This type of transmission uses a worm. The worm diameter and the number of teeth are inputted into the calculation gradually. Then, a table with proper solutions is shown on the screen. After completing the table, you can then move on to the main calculation. You can change the strength parameters as well.
The maximum worm shaft deflection is calculated using the finite element method (FEM). The model has many parameters, including the size of the elements and boundary conditions. The results from these simulations are compared to the corresponding analytical values to calculate the maximum deflection. The result is a table that displays the maximum worm shaft deflection. The tables can be downloaded below. You can also find more information about the different deflection formulas and their applications.
The calculation method used by DIN EN 10084 is based on the hardened cemented worm of 16MnCr5. Then, you can use DIN EN 10084 (CuSn12Ni2-C-GZ) and DIN EN 1982 (CuAl10Fe5Ne5-C-GZ). Then, you can enter the worm face width, either manually or using the auto-suggest option.
Common methods for the calculation of worm shaft deflection provide a good approximation of deflection but do not account for geometric modifications on the worm. While Norgauer’s 2021 approach addresses these issues, it fails to account for the helical winding of the worm teeth and overestimates the stiffening effect of gearing. More sophisticated approaches are required for the efficient design of thin worm shafts.
Worm gears have a low noise and vibration compared to other types of mechanical devices. However, worm gears are often limited by the amount of wear that occurs on the softer worm wheel. Worm shaft deflection is a significant influencing factor for noise and wear. The calculation method for worm gear deflection is available in ISO/TR 14521, DIN 3996, and AGMA 6022.
The worm gear can be designed with a precise transmission ratio. The calculation involves dividing the transmission ratio between more stages in a gearbox. Power transmission input parameters affect the gearing properties, as well as the material of the worm/gear. To achieve a better efficiency, the worm/gear material should match the conditions that are to be experienced. The worm gear can be a self-locking transmission.
The worm gearbox contains several machine elements. The main contributors to the total power loss are the axial loads and bearing losses on the worm shaft. Hence, different bearing configurations are studied. One type includes locating/non-locating bearing arrangements. The other is tapered roller bearings. The worm gear drives are considered when locating versus non-locating bearings. The analysis of worm gear drives is also an investigation of the X-arrangement and four-point contact bearings.
worm shaft

Influence of tooth forces on bending stiffness of a worm gear

The bending stiffness of a worm gear is dependent on tooth forces. Tooth forces increase as the power density increases, but this also leads to increased worm shaft deflection. The resulting deflection can affect efficiency, wear load capacity, and NVH behavior. Continuous improvements in bronze materials, lubricants, and manufacturing quality have enabled worm gear manufacturers to produce increasingly high power densities.
Standardized calculation methods take into account the supporting effect of the toothing on the worm shaft. However, overhung worm gears are not included in the calculation. In addition, the toothing area is not taken into account unless the shaft is designed next to the worm gear. Similarly, the root diameter is treated as the equivalent bending diameter, but this ignores the supporting effect of the worm toothing.
A generalized formula is provided to estimate the STE contribution to vibratory excitation. The results are applicable to any gear with a meshing pattern. It is recommended that engineers test different meshing methods to obtain more accurate results. One way to test tooth-meshing surfaces is to use a finite element stress and mesh subprogram. This software will measure tooth-bending stresses under dynamic loads.
The effect of tooth-brushing and lubricant on bending stiffness can be achieved by increasing the pressure angle of the worm pair. This can reduce tooth bending stresses in the worm gear. A further method is to add a load-loaded tooth-contact analysis (CCTA). This is also used to analyze mismatched ZC1 worm drive. The results obtained with the technique have been widely applied to various types of gearing.
In this study, we found that the ring gear’s bending stiffness is highly influenced by the teeth. The chamfered root of the ring gear is larger than the slot width. Thus, the ring gear’s bending stiffness varies with its tooth width, which increases with the ring wall thickness. Furthermore, a variation in the ring wall thickness of the worm gear causes a greater deviation from the design specification.
To understand the impact of the teeth on the bending stiffness of a worm gear, it is important to know the root shape. Involute teeth are susceptible to bending stress and can break under extreme conditions. A tooth-breakage analysis can control this by determining the root shape and the bending stiffness. The optimization of the root shape directly on the final gear minimizes the bending stress in the involute teeth.
The influence of tooth forces on the bending stiffness of a worm gear was investigated using the CZPT Spiral Bevel Gear Test Facility. In this study, multiple teeth of a spiral bevel pinion were instrumented with strain gages and tested at speeds ranging from static to 14400 RPM. The tests were performed with power levels as high as 540 kW. The results obtained were compared with the analysis of a three-dimensional finite element model.
worm shaft

Characteristics of worm gears

Worm gears are unique types of gears. They feature a variety of characteristics and applications. This article will examine the characteristics and benefits of worm gears. Then, we’ll examine the common applications of worm gears. Let’s take a look! Before we dive in to worm gears, let’s review their capabilities. Hopefully, you’ll see how versatile these gears are.
A worm gear can achieve massive reduction ratios with little effort. By adding circumference to the wheel, the worm can greatly increase its torque and decrease its speed. Conventional gearsets require multiple reductions to achieve the same reduction ratio. Worm gears have fewer moving parts, so there are fewer places for failure. However, they can’t reverse the direction of power. This is because the friction between the worm and wheel makes it impossible to move the worm backwards.
Worm gears are widely used in elevators, hoists, and lifts. They are particularly useful in applications where stopping speed is critical. They can be incorporated with smaller brakes to ensure safety, but shouldn’t be relied upon as a primary braking system. Generally, they are self-locking, so they are a good choice for many applications. They also have many benefits, including increased efficiency and safety.
Worm gears are designed to achieve a specific reduction ratio. They are typically arranged between the input and output shafts of a motor and a load. The 2 shafts are often positioned at an angle that ensures proper alignment. Worm gear gears have a center spacing of a frame size. The center spacing of the gear and worm shaft determines the axial pitch. For instance, if the gearsets are set at a radial distance, a smaller outer diameter is necessary.
Worm gears’ sliding contact reduces efficiency. But it also ensures quiet operation. The sliding action limits the efficiency of worm gears to 30% to 50%. A few techniques are introduced herein to minimize friction and to produce good entrance and exit gaps. You’ll soon see why they’re such a versatile choice for your needs! So, if you’re considering purchasing a worm gear, make sure you read this article to learn more about its characteristics!
An embodiment of a worm gear is described in FIGS. 19 and 20. An alternate embodiment of the system uses a single motor and a single worm 153. The worm 153 turns a gear which drives an arm 152. The arm 152, in turn, moves the lens/mirr assembly 10 by varying the elevation angle. The motor control unit 114 then tracks the elevation angle of the lens/mirr assembly 10 in relation to the reference position.
The worm wheel and worm are both made of metal. However, the brass worm and wheel are made of brass, which is a yellow metal. Their lubricant selections are more flexible, but they’re limited by additive restrictions due to their yellow metal. Plastic on metal worm gears are generally found in light load applications. The lubricant used depends on the type of plastic, as many types of plastics react to hydrocarbons found in regular lubricant. For this reason, you need a non-reactive lubricant.

China Standard Horizontal Automatic Energy Saving Servo Drive Pet Plastic Preform Making Injection Blow Moulding Machine   with Good qualityChina Standard Horizontal Automatic Energy Saving Servo Drive Pet Plastic Preform Making Injection Blow Moulding Machine   with Good quality