China Good quality Battery Power Locomotive for Mini and Engineering with Hot selling

Product Description

                   

Overview

locomotive adopts the hood-type and inner walking way structure and is equipped with the lithium iron phosphate battery power source with service capacity of 303kWh. The axle arrangement is B0, total locomotive weight is 28 (1±3%) t, the gauge is 1435mm and the max. Running speed is 60  km/h.

1.Battery power locomotive

The locomotive is divided into the upper part and the lower part. The upper part is an integral chamber, which consists of 2 consoles, driver’s seats, operator seats, electric cabinet, frequency conversion cabinet, charging cabinet, doors and windows. The lower part is mainly equipped with air compressor, traction motor, power battery pack, main reservior and running part.
The interior of the locomotive carbody is a whole room without partitions. Various cabinets are arranged on both sides, and the middle is a single channel. The entire carbody is mainly divided into side walls, end walls, frame and ceiling, and the ceiling has openings for the  internal equipment.
Seats for operators to rest, electrical cabinet, brake cabinet, frequency conversion cabinet, charging cabinet, and drinking machine are arranged on both sides of the middle of the carbody.The length of the bench seats can ensure that 8 operators can be carried during commuting. The seats are arranged diagonally and the door is arranged on the opposite side of the bench seats to facilitate the fastest escape in emergency situations.
Traction motors are suspended at both ends of the locomotive. Self-cooling method is used for the traction motor. The  axle arrangement is B0, and the axle is provided with a secondary axle gear box with the gear ratio of 5.8. There are 2 power battery  packs hanging in the middle.
The power from the battery is transmitted to the traction motor through the inverter. The traction motor drives the secondary axle gear through the universal shaft and finally drives the wheel sets. A pair of cylindrical gears and a pair of spiral bevel gears are arranged in the secondary axle gear box.

2.Technical Description

Transmission mode AC-AC transmission
Clearance Meet the requirement of the  end-user
Battery model Lithium iron phosphate battery
Dimension 1 0571 mm×2550mm×3350mm
Rated voltage DC537.6 V
Battery capacity 303kWh
Charging mode On-board  charging ( from  20%  to 95%
within 3 hours)
Rated power of motor 300kW(150kW×2)
Gear ratio 5.8
Starting tractive effort 70 kN
Continuous tractive effort 43 kN
Max. speed 60km/h
Continuous speed 15 km/h
Gauge 1435mm
Wheel diameter 840mm
Axle load ≤14t
Service weight 28(1±3%) t
Axle arrangement B0
Max. gradient 35‰
Min.negotiable curve radius 90m
Coupler model Specially used for engineering vehicle
Brake model JZ-7

3.Photos

4.About Us
       
 

  • HangZhou CZPT Company was created to both supply and design components, complete passenger carriages, freight wagons and spare parts for the ever growing world railway market.
  • Our technical engineers, sales personnel and management team have many combined years of extensive experience in the Railway Industry with projects based all over the world.
  • Our goals is to meet all of the Customers’ requirements, bringing them the best products, Project management, Maintenance, System Design and Integration at the best price possible without any problems or delays.
  • We offer a large inventory of products from the best Manufactures in China and other world leaders in railway product manufacture.
  • Global shipping and project requirements with time sensitive deliveries and savings is our main aim.
  • We look forward to help our clients grow and deliver in this industry all over the world.

5.Service

6.Contact Us

 

How to Choose the Right Worm Shaft

You might be curious to know how to choose the right Worm Shaft. In this article, you will learn about worm modules with the same pitch diameter, Double-thread worm gears, and Self-locking worm drive. Once you have chosen the proper Worm Shaft, you will find it easier to use the equipment in your home. There are many advantages to selecting the right Worm Shaft. Read on to learn more.
worm shaft

Concave shape

The concave shape of a worm’s shaft is an important characteristic for the design of a worm gearing. Worm gearings can be found in a wide range of shapes, and the basic profile parameters are available in professional and firm literature. These parameters are used in geometry calculations, and a selection of the right worm gearing for a particular application can be based on these requirements.
The thread profile of a worm is defined by the tangent to the axis of its main cylinder. The teeth are shaped in a straight line with a slightly concave shape along the sides. It resembles a helical gear, and the profile of the worm itself is straight. This type of gearing is often used when the number of teeth is greater than a certain limit.
The geometry of a worm gear depends on the type and manufacturer. In the earliest days, worms were made similar to simple screw threads, and could be chased on a lathe. During this time, the worm was often made with straight-sided tools to produce threads in the acme plane. Later, grinding techniques improved the thread finish and reduced distortions resulting from hardening.
When a worm gearing has multiple teeth, the pitch angle is a key parameter. A greater pitch angle increases efficiency. If you want to increase the pitch angle without increasing the number of teeth, you can replace a worm pair with a different number of thread starts. The helix angle must increase while the center distance remains constant. A higher pitch angle, however, is almost never used for power transmissions.
The minimum number of gear teeth depends on the angle of pressure at zero gearing correction. The diameter of the worm is d1, and is based on a known module value, mx or mn. Generally, larger values of m are assigned to larger modules. And a smaller number of teeth is called a low pitch angle. In case of a low pitch angle, spiral gearing is used. The pitch angle of the worm gear is smaller than 10 degrees.
worm shaft

Multiple-thread worms

Multi-thread worms can be divided into sets of one, two, or 4 threads. The ratio is determined by the number of threads on each set and the number of teeth on the apparatus. The most common worm thread counts are 1,2,4, and 6. To find out how many threads you have, count the start and end of each thread and divide by two. Using this method, you will get the correct thread count every time.
The tangent plane of a worm’s pitch profile changes as the worm moves lengthwise along the thread. The lead angle is greatest at the throat, and decreases on both sides. The curvature radius r” varies proportionally with the worm’s radius, or pitch angle at the considered point. Hence, the worm leads angle, r, is increased with decreased inclination and decreases with increasing inclination.
Multi-thread worms are characterized by a constant leverage between the gear surface and the worm threads. The ratio of worm-tooth surfaces to the worm’s length varies, which enables the wormgear to be adjusted in the same direction. To optimize the gear contact between the worm and gear, the tangent relationship between the 2 surfaces is optimal.
The efficiency of worm gear drives is largely dependent on the helix angle of the worm. Multiple thread worms can improve the efficiency of the worm gear drive by as much as 25 to 50% compared to single-thread worms. Worm gears are made of bronze, which reduces friction and heat on the worm’s teeth. A specialized machine can cut the worm gears for maximum efficiency.

Double-thread worm gears

In many different applications, worm gears are used to drive a worm wheel. These gears are unique in that the worm cannot be reversed by the power applied to the worm wheel. Because of their self-locking properties, they can be used to prevent reversing motion, although this is not a dependable function. Applications for worm gears include hoisting equipment, elevators, chain blocks, fishing reels, and automotive power steering. Because of their compact size, these gears are often used in applications with limited space.
Worm sets typically exhibit more wear than other types of gears, and this means that they require more limited contact patterns in new parts. Worm wheel teeth are concave, making it difficult to measure tooth thickness with pins, balls, and gear tooth calipers. To measure tooth thickness, however, you can measure backlash, a measurement of the spacing between teeth in a gear. Backlash can vary from 1 worm gear to another, so it is important to check the backlash at several points. If the backlash is different in 2 places, this indicates that the teeth may have different spacing.
Single-thread worm gears provide high speed reduction but lower efficiency. A multi-thread worm gear can provide high efficiency and high speed, but this comes with a trade-off in terms of horsepower. However, there are many other applications for worm gears. In addition to heavy-duty applications, they are often used in light-duty gearboxes for a variety of functions. When used in conjunction with double-thread worms, they allow for a substantial speed reduction in 1 step.
Stainless-steel worm gears can be used in damp environments. The worm gear is not susceptible to rust and is ideal for wet and damp environments. The worm wheel’s smooth surfaces make cleaning them easy. However, they do require lubricants. The most common lubricant for worm gears is mineral oil. This lubricant is designed to protect the worm drive.
worm shaft

Self-locking worm drive

A self-locking worm drive prevents the platform from moving backward when the motor stops. A dynamic self-locking worm drive is also possible but does not include a holding brake. This type of self-locking worm drive is not susceptible to vibrations, but may rattle if released. In addition, it may require an additional brake to keep the platform from moving. A positive brake may be necessary for safety.
A self-locking worm drive does not allow for the interchangeability of the driven and driving gears. This is unlike spur gear trains that allow both to interchange positions. In a self-locking worm drive, the driving gear is always engaged and the driven gear remains stationary. The drive mechanism locks automatically when the worm is operated in the wrong manner. Several sources of information on self-locking worm gears include the Machinery’s Handbook.
A self-locking worm drive is not difficult to build and has a great mechanical advantage. In fact, the output of a self-locking worm drive cannot be backdriven by the input shaft. DIYers can build a self-locking worm drive by modifying threaded rods and off-the-shelf gears. However, it is easier to make a ratchet and pawl mechanism, and is significantly less expensive. However, it is important to understand that you can only drive 1 worm at a time.
Another advantage of a self-locking worm drive is the fact that it is not possible to interchange the input and output shafts. This is a major benefit of using such a mechanism, as you can achieve high gear reduction without increasing the size of the gear box. If you’re thinking about buying a self-locking worm gear for a specific application, consider the following tips to make the right choice.
An enveloping worm gear set is best for applications requiring high accuracy and efficiency, and minimum backlash. Its teeth are shaped differently, and the worm’s threads are modified to increase surface contact. They are more expensive to manufacture than their single-start counterparts, but this type is best for applications where accuracy is crucial. The worm drive is also a great option for heavy trucks because of their large size and high-torque capacity.

China Good quality Battery Power Locomotive for Mini and Engineering   with Hot sellingChina Good quality Battery Power Locomotive for Mini and Engineering   with Hot selling