Tag Archives: motor electric

China manufacturer Hot Sale CNC Machining Transmission Shaft Carbon Steel Drive Shaft Industrial Machinery Press Brake Stainless Steel Electric Motor Machine Tool Axis with Great quality

Product Description

 

           ZheJiang E-Rally Technology Co., Ltd. is 1 of most experienced professional rapid prototype and mass production manufacturer. Located in ZheJiang China.
          Our market focus is to supply the professional machining solution for micro precision partsAuto Spare Parts, Especially Semiconductor equipment parts, Environmental protection equipment parts, Testing equipment parts, And other kinds of high precision parts manufacturing. We don’t only provide OEM services, we can also provide you with the professional technical support and best production plan of equipment and parts.
         We specialize in rapid prototyping, rapid tooling, low volume and mass production manufacturing of custom parts. We produce over 10,000 kinds of parts every year, with rich processing experience, we can make everything into reality. Short lead time, 24-hour response, full steps QC inspection, Non-disclosure agreement is strictly respected.
         Please feel free to contact us.
 

Cooperate with us You Will Get:

* Competitive Price Of CNC Precision Machinery part

* Good Quality Assurance

* In Time Sampling & In Time Shipment

* Quality Guarantee

* Free Sample Can Be Provided Some Time

* Low MOQ

* Reply in 24 hours and fast quotaion

How to work with us?

1. Send us your 3D drawing (STEP/IGS/SolidWorks format etc. ) so we can check all dimension to quote.

2. Expatiate your requirements (your quantity, material, and surface finish requirements, etc.) to our email 

Drawing Format Can Done By E-Rally?

dwg, dxf, prt, iGS, step, stp, iges, slprt, asm, x_t files are all accepted.

What kinds of CNC machining product is suitable to send to E-Rally for quoation?

CNC machining product, CNC milling product, CNC lathing product, CNC turning product, CNC precision machining product, maching product, precision product and all machining parts used in different industrials such as: spray nozzle, car accessories, railway accessories, bathroom accessoires, equipemnt spare parts, pipe and fittings and so on.

Product Description

 

Product Name: CNC Machinery Part For Multi industry equipment Auto Part Phone Parts Machine Part Household appliance parts
Manufacture Process: Design – Primary Processing-CNC Machining-Inspecting-Packing
Main Material: Aluminium,Brass,Steel,etc.
Color: Custom Color
Finish: Clean/Polish/Anodized/Custom Surface
Production Equipment: CNC Machining, CNC Turning, CNC Milling, 
Complex CNC turning & milling, 4 & 5 Axis CNC Machining, 
Laser Cutting, CNC Bending, Wire Cutting, Stamping, Casting,  Grinding etc.
Surface Treatment:  Clear/black/golden/blue/red/hard Anodizing
 Glass bead blasting, Brushing, Polish
 Zinc/Nickel/Silver Plating
 Powder Coating, Heat treatment, Black oxdized
 Passivate, Painting, Laser engraving, Silk screen etc.
Measuring Instruments and Equipment:  1) Micrometer

2) Smooth plug gauge

3) Thread gauge

4) Image measuring instrument

5) Coordinate Measuring Machine

6) Roughness tester

7) Routine inspection of calipers

Tolerance: ± 0.005~0.100 mm
Quality control: ISO 9001:2008 & IATF 16949
Sample time: 1-3 days
Service: Customized OEM/ODM
Shipment: Fedex, DHL, UPS, Sea or Air Shipment, etc.
One-stop Service: Custom Design, Fabrication, Assembly And Delivery
File Format: Solidworks,Pro/Engineer,Auto CAD,C4D,Creo,PDF,JPG,DXF,IGS,STEP,DWG

Customized CNC Parts for Various Equipment Auto Moto Parts

 

High precision custom mold / Injection CZPT / Mold accessories

Machinable materials
Steel 1018 Stainless Steel 17-4PH Copper/Brass 110
1045 302 145
1050 303 147
1117 304 314
1141 316 316
1144 321 360
11L17 409 544
11L41 410 624
1215 416 Beryllium Copper
12L14 420 Plastics ABS
4140 430 PC
4142 440 PP
41L40 Aluminum 2011 PEEK
41L42 2571 PET
8620 5052 PUM
86L20 6061 PVC
E52100 6063 Delron
Fatigue proof 6082 Nylon
Stress proof 6262 Teflon
Customized 7075 Celcon

Steel Aluminum Copper/Brass Plastics

 

Previous Cases

CNC Machining CNC Turning Motorcycles Parts Mould Laser Cutting Stamping Parts

 

☆☆☆☆☆
All the pictures are actually taken by rally. Every year, more than 10,000 kinds of parts are manufactured, involving many industries:

Medical equipment Semiconductor equipment 5g communication equipment Packaging equipment Intelligent assembly

 

Logistics Delivery

 

 

FAQ

1. Are you a trader or a manufacturer?
KTS:We are manufacturer, our factory is located in HangZhou, ZheJiang Province, China, The starting point of HangZhou Europe Railway, Welcome to visit our factory.

2. May i order small quantity of CNC mashinery parts or carbide products?
KTS:We support small batch customization, but different models have different MOQ, please contact US to confirm.

3.Can you provide sample?

KTS: Yes, please feel free to tell us, also your own design is welcome to make sample for you, After confirming the authenticity of your company, we are willing to provide small quantities of free samples.

4.What is your price term, payment term and delivery terms?
Price Terms: By FOB ZheJiang or other port. Balance before shipment. Rail transport is also allowed. 
Payment Terms: T/T advance.
Delivery Terms: By express, by air, by train, by shipment or as requirement

Contact us:       

                                             
ZheJiang E-Rally supply Chain Machinery Co.,Ltd.
Address: No.1, floor 1, building 1, No.26 Xixin Avenue, high tech Zone, HangZhou, ZheJiang , China

If there’s anything we can help, please feel free to contact with us.                                                    
We’re sure your any inquiry or requirement will get prompt attention.

Screw Sizes and Their Uses

Screws have different sizes and features. This article will discuss screw sizes and their uses. There are 2 main types: right-handed and left-handed screw shafts. Each screw features a point that drills into the object. Flat tipped screws, on the other hand, need a pre-drilled hole. These screw sizes are determined by the major and minor diameters. To determine which size of screw you need, measure the diameter of the hole and the screw bolt’s thread depth.

The major diameter of a screw shaft

The major diameter of a screw shaft is the distance from the outer edge of the thread on 1 side to the tip of the other. The minor diameter is the inner smooth part of the screw shaft. The major diameter of a screw is typically between 2 and 16 inches. A screw with a pointy tip has a smaller major diameter than 1 without. In addition, a screw with a larger major diameter will have a wider head and drive.
The thread of a screw is usually characterized by its pitch and angle of engagement. The pitch is the angle formed by the helix of a thread, while the crest forms the surface of the thread corresponding to the major diameter of the screw. The pitch angle is the angle between the gear axis and the pitch surface. Screws without self-locking threads have multiple starts, or helical threads.
The pitch is a crucial component of a screw’s threading system. Pitch is the distance from a given thread point to the corresponding point of the next thread on the same shaft. The pitch line is 1 element of pitch diameter. The pitch line, or lead, is a crucial dimension for the thread of a screw, as it controls the amount of thread that will advance during a single turn.
screwshaft

The pitch diameter of a screw shaft

When choosing the appropriate screw, it is important to know its pitch diameter and pitch line. The pitch line designates the distance between adjacent thread sides. The pitch diameter is also known as the mean area of the screw shaft. Both of these dimensions are important when choosing the correct screw. A screw with a pitch of 1/8 will have a mechanical advantage of 6.3. For more information, consult an application engineer at Roton.
The pitch diameter of a screw shaft is measured as the distance between the crest and the root of the thread. Threads that are too long or too short will not fit together in an assembly. To measure pitch, use a measuring tool with a metric scale. If the pitch is too small, it will cause the screw to loosen or get stuck. Increasing the pitch will prevent this problem. As a result, screw diameter is critical.
The pitch diameter of a screw shaft is measured from the crest of 1 thread to the corresponding point on the next thread. Measurement is made from 1 thread to another, which is then measured using the pitch. Alternatively, the pitch diameter can be approximated by averaging the major and minor diameters. In most cases, the pitch diameter of a screw shaft is equal to the difference between the two.

The thread depth of a screw shaft

Often referred to as the major diameter, the thread depth is the outermost diameter of the screw. To measure the thread depth of a screw, use a steel rule, micrometer, or caliper. In general, the first number in the thread designation indicates the major diameter of the thread. If a section of the screw is worn, the thread depth will be smaller, and vice versa. Therefore, it is good practice to measure the section of the screw that receives the least amount of use.
In screw manufacturing, the thread depth is measured from the crest of the screw to the root. The pitch diameter is halfway between the major and minor diameters. The lead diameter represents the amount of linear distance traveled in 1 revolution. As the lead increases, the load capacity decreases. This measurement is primarily used in the construction of screws. However, it should not be used for precision machines. The thread depth of a screw shaft is essential for achieving accurate screw installation.
To measure the thread depth of a screw shaft, the manufacturer must first determine how much material the thread is exposed to. If the thread is exposed to side loads, it can cause the nut to wedge. Because the nut will be side loaded, its thread flanks will contact the nut. The less clearance between the nut and the screw, the lower the clearance between the nut and the screw. However, if the thread is centralized, there is no risk of the nut wedgeing.
screwshaft

The lead of a screw shaft

Pitch and lead are 2 measurements of a screw’s linear distance per turn. They’re often used interchangeably, but their definitions are not the same. The difference between them lies in the axial distance between adjacent threads. For single-start screws, the pitch is equal to the lead, while the lead of a multi-start screw is greater than the pitch. This difference is often referred to as backlash.
There are 2 ways to calculate the pitch and lead of a screw. For single-start screws, the lead and pitch are equal. Multiple-start screws, on the other hand, have multiple starts. The pitch of a multiple-start screw is the same as its lead, but with 2 or more threads running the length of the screw shaft. A square-thread screw is a better choice in applications requiring high load-bearing capacity and minimal friction losses.
The PV curve defines the safe operating limits of lead screw assemblies. It describes the inverse relationship between contact surface pressure and sliding velocity. As the load increases, the lead screw assembly must slow down in order to prevent irreversible damage from frictional heat. Furthermore, a lead screw assembly with a polymer nut must reduce rpm as the load increases. The more speed, the lower the load capacity. But, the PV factor must be below the maximum allowed value of the material used to make the screw shaft.

The thread angle of a screw shaft

The angle between the axes of a thread and the helix of a thread is called the thread angle. A unified thread has a 60-degree angle in all directions. Screws can have either a tapped hole or a captive screw. The screw pitch is measured in millimeters (mm) and is usually equal to the screw major diameter. In most cases, the thread angle will be equal to 60-degrees.
Screws with different angles have various degrees of thread. Originally, this was a problem because of the inconsistency in the threading. However, Sellers’s thread was easier to manufacture and was soon adopted as a standard throughout the United States. The United States government began to adopt this thread standard in the mid-1800s, and several influential corporations in the railroad industry endorsed it. The resulting standard is called the United States Standard thread, and it became part of the ASA’s Vol. 1 publication.
There are 2 types of screw threads: coarse and fine. The latter is easier to tighten and achieves tension at lower torques. On the other hand, the coarse thread is deeper than the fine one, making it easier to apply torque to the screw. The thread angle of a screw shaft will vary from bolt to bolt, but they will both fit in the same screw. This makes it easier to select the correct screw.
screwshaft

The tapped hole (or nut) into which the screw fits

A screw can be re-threaded without having to replace it altogether. The process is different than that of a standard bolt, because it requires threading and tapping. The size of a screw is typically specified by its major and minor diameters, which is the inside distance between threads. The thread pitch, which is the distance between each thread, is also specified. Thread pitch is often expressed in threads per inch.
Screws and bolts have different thread pitches. A coarse thread has fewer threads per inch and a longer distance between threads. It is therefore larger in diameter and longer than the material it is screwed into. A coarse thread is often designated with an “A” or “B” letter. The latter is generally used in smaller-scale metalworking applications. The class of threading is called a “threaded hole” and is designated by a letter.
A tapped hole is often a complication. There is a wide range of variations between the sizes of threaded holes and nut threads, so the tapped hole is a critical dimension in many applications. However, even if you choose a threaded screw that meets the requisite tolerance, there may be a mismatch in the thread pitch. This can prevent the screw from freely rotating.

China manufacturer Hot Sale CNC Machining Transmission Shaft Carbon Steel Drive Shaft Industrial Machinery Press Brake Stainless Steel Electric Motor Machine Tool Axis   with Great qualityChina manufacturer Hot Sale CNC Machining Transmission Shaft Carbon Steel Drive Shaft Industrial Machinery Press Brake Stainless Steel Electric Motor Machine Tool Axis   with Great quality

China Best Sales Battery Operated Electric Motor Drive Ladle Transfer Car for Molten Steel Handling with Free Design Custom

Product Description

Transfer Car

1.Application

The electric transfer car is mainly applied in assembly line(ring production line, loop production line), metallurgy industry (steel ladle), warehouse transport, ship industry (maintenance, assemble, container transport), workpiece transport in workshop, ladle transport, steel factory(steel billet, steel plate, steel coil, steel pipe, section steel, steel structure), construction(bridge, simple building, concrete, concrete column), petroleum industry(oil pump, sucker rod and parts), energy(polycrystalline silicon, generator, windmill), chemical industry(electrolytic cell, retort etc), railway(rail maintenance, rail welding, train tractor).

2.Main Features

1. high level automation(self propelled/steerable)
2. The largest capacity can reach to 500t
3. Safe parts are installed in the transfer car(warning light, e-stop, buffer…)
4. Robust sturdy car frame
5. AC/DC electric engine , diesel engine or pneumatic engine
6. Excellent gear reducer and motor with high quality, assemblied together perfectly
7. Remote control&hand pendant control make the opration more convenient.
8. The speed can be adjusted.
9. Easy operation and maintenance
10. Famous brand parts, guarantee the quality and prolong the using lifetime
11. Low noise and do not pollute the environment
12. 360 degree free turning

3.Packing and Delivery

4. How to choose a suitable transfer car?
All of our rail transfer car all customized as client’s requirement, for choose the most suitable handling trolley,please
kindly providing the following information:
·  Transfer or handling what material/cargo?
·  What capacity do you need?
·  This transfer trolley is running on rails or ground(floor)?
·  Your requirement for table size:length,width and height?
·  How about the running distance?
.  How many hours does the transfer car work 1 day?

5.Service and Warranty

As a professional manufacturer, we provide follow services:

1. Lower price for sample, Competitive prices for distributors

2. ONE year warranty and life time maintenance

3. In time delivery.

4. High Quality assurance

 

 

What Are Worm Gears and Worm Shafts?

If you’re looking for a fishing reel with a worm gear system, you’ve probably come across the term ‘worm gear’. But what are worm gears and worm shafts? And what are the advantages and disadvantages of worm gears? Let’s take a closer look! Read on to learn more about worm gears and shafts! Then you’ll be well on your way to purchasing a reel with a worm gear system.
worm shaft

worm gear reducers

Worm shaft reducers have a number of advantages over conventional gear reduction mechanisms. First, they’re highly efficient. While single stage worm reducers have a maximum reduction ratio of about 5 to 60, hypoid gears can typically go up to a maximum of 1 hundred and 20 times. A worm shaft reducer is only as efficient as the gearing it utilizes. This article will discuss some of the advantages of using a hypoid gear set, and how it can benefit your business.
To assemble a worm shaft reducer, first remove the flange from the motor. Then, remove the output bearing carrier and output gear assembly. Lastly, install the intermediate worm assembly through the bore opposite to the attachment housing. Once installed, you should carefully remove the bearing carrier and the gear assembly from the motor. Don’t forget to remove the oil seal from the housing and motor flange. During this process, you must use a small hammer to tap around the face of the plug near the outside diameter of the housing.
Worm gears are often used in reversing prevention systems. The backlash of a worm gear can increase with wear. However, a duplex worm gear was designed to address this problem. This type of gear requires a smaller backlash but is still highly precise. It uses different leads for the opposing tooth face, which continuously alters its tooth thickness. Worm gears can also be adjusted axially.

worm gears

There are a couple of different types of lubricants that are used in worm gears. The first, polyalkylene glycols, are used in cases where high temperature is not a concern. This type of lubricant does not contain any waxes, which makes it an excellent choice in low-temperature applications. However, these lubricants are not compatible with mineral oils or some types of paints and seals. Worm gears typically feature a steel worm and a brass wheel. The brass wheel is much easier to remodel than steel and is generally modeled as a sacrificial component.
The worm gear is most effective when it is used in small and compact applications. Worm gears can greatly increase torque or reduce speed, and they are often used where space is an issue. Worm gears are among the smoothest and quietest gear systems on the market, and their meshing effectiveness is excellent. However, the worm gear requires high-quality manufacturing to perform at its highest levels. If you’re considering a worm gear for a project, it’s important to make sure that you find a manufacturer with a long and high quality reputation.
The pitch diameters of both worm and pinion gears must match. The 2 worm cylinders in a worm wheel have the same pitch diameter. The worm wheel shaft has 2 pitch cylinders and 2 threads. They are similar in pitch diameter, but have different advancing angles. A self-locking worm gear, also known as a wormwheel, is usually self-locking. Moreover, self-locking worm gears are easy to install.

worm shafts

The deflection of worm shafts varies with toothing parameters. In addition to toothing length, worm gear size and pressure angle, worm gear size and number of helical threads are all influencing factors. These variations are modeled in the standard ISO/TS 14521 reference gear. This table shows the variations in each parameter. The ID indicates the worm shaft’s center distance. In addition, a new calculation method is presented for determining the equivalent bending diameter of the worm.
The deflection of worm shafts is investigated using a four-stage process. First, the finite element method is used to compute the deflection of a worm shaft. Then, the worm shaft is experimentally tested, comparing the results with the corresponding simulations. The final stage of the simulation is to consider the toothing geometry of 15 different worm gear toothings. The results of this step confirm the modeled results.
The lead on the right and left tooth surfaces of worms is the same. However, the lead can be varied along the worm shaft. This is called dual lead worm gear, and is used to eliminate play in the main worm gear of hobbing machines. The pitch diameters of worm modules are equal. The same principle applies to their pitch diameters. Generally, the lead angle increases as the number of threads decreases. Hence, the larger the lead angle, the less self-locking it becomes.
worm shaft

worm gears in fishing reels

Fishing reels usually include worm shafts as a part of the construction. Worm shafts in fishing reels allow for uniform worm winding. The worm shaft is attached to a bearing on the rear wall of the reel unit through a hole. The worm shaft’s front end is supported by a concave hole in the front of the reel unit. A conventional fishing reel may also have a worm shaft attached to the sidewall.
The gear support portion 29 supports the rear end of the pinion gear 12. It is a thick rib that protrudes from the lid portion 2 b. It is mounted on a bushing 14 b, which has a through hole through which the worm shaft 20 passes. This worm gear supports the worm. There are 2 types of worm gears available for fishing reels. The 2 types of worm gears may have different number of teeth or they may be the same.
Typical worm shafts are made of stainless steel. Stainless steel worm shafts are especially corrosion-resistant and durable. Worm shafts are used on spinning reels, spin-casting reels, and in many electrical tools. A worm shaft can be reversible, but it is not entirely reliable. There are numerous benefits of worm shafts in fishing reels. These fishing reels also feature a line winder or level winder.

worm gears in electrical tools

Worms have different tooth shapes that can help increase the load carrying capacity of a worm gear. Different tooth shapes can be used with circular or secondary curve cross sections. The pitch point of the cross section is the boundary for this type of mesh. The mesh can be either positive or negative depending on the desired torque. Worm teeth can also be inspected by measuring them over pins. In many cases, the lead thickness of a worm can be adjusted using a gear tooth caliper.
The worm shaft is fixed to the lower case section 8 via a rubber bush 13. The worm wheel 3 is attached to the joint shaft 12. The worm 2 is coaxially attached to the shaft end section 12a. This joint shaft connects to a swing arm and rotates the worm wheel 3.
The backlash of a worm gear may be increased if the worm is not mounted properly. To fix the problem, manufacturers have developed duplex worm gears, which are suitable for small backlash applications. Duplex worm gears utilize different leads on each tooth face for continuous change in tooth thickness. In this way, the center distance of the worm gear can be adjusted without changing the worm’s design.

worm gears in engines

Using worm shafts in engines has a few benefits. First of all, worm gears are quiet. The gear and worm face move in opposite directions so the energy transferred is linear. Worm gears are popular in applications where torque is important, such as elevators and lifts. Worm gears also have the advantage of being made from soft materials, making them easy to lubricate and to use in applications where noise is a concern.
Lubricants are necessary for worm gears. The viscosity of lubricants determines whether the worm is able to touch the gear or wheel. Common lubricants are ISO 680 and 460, but higher viscosity oil is not uncommon. It is essential to use the right lubricants for worm gears, since they cannot be lubricated indefinitely.
Worm gears are not recommended for engines due to their limited performance. The worm gear’s spiral motion causes a significant reduction in space, but this requires a high amount of lubrication. Worm gears are susceptible to breaking down because of the stress placed on them. Moreover, their limited speed can cause significant damage to the gearbox, so careful maintenance is essential. To make sure worm gears remain in top condition, you should inspect and clean them regularly.
worm shaft

Methods for manufacturing worm shafts

A novel approach to manufacturing worm shafts and gearboxes is provided by the methods of the present invention. Aspects of the technique involve manufacturing the worm shaft from a common worm shaft blank having a defined outer diameter and axial pitch. The worm shaft blank is then adapted to the desired gear ratio, resulting in a gearbox family with multiple gear ratios. The preferred method for manufacturing worm shafts and gearboxes is outlined below.
A worm shaft assembly process may involve establishing an axial pitch for a given frame size and reduction ratio. A single worm shaft blank typically has an outer diameter of 100 millimeters, which is the measurement of the worm gear set’s center distance. Upon completion of the assembly process, the worm shaft has the desired axial pitch. Methods for manufacturing worm shafts include the following:
For the design of the worm gear, a high degree of conformity is required. Worm gears are classified as a screw pair in the lower pairs. Worm gears have high relative sliding, which is advantageous when comparing them to other types of gears. Worm gears require good surface finish and rigid positioning. Worm gear lubrication usually comprises surface active additives such as silica or phosphor-bronze. Worm gear lubricants are often mixed. The lubricant film that forms on the gear teeth has little impact on wear and is generally a good lubricant.

China Best Sales Battery Operated Electric Motor Drive Ladle Transfer Car for Molten Steel Handling   with Free Design CustomChina Best Sales Battery Operated Electric Motor Drive Ladle Transfer Car for Molten Steel Handling   with Free Design Custom

China Professional Low Speed 4096 Encoder 12inch 500W DC Electric Brushless Agv Drive Wheel Hub Motor near me factory

Product Description

Brushless Geared 

12Inch Inflated Tyre

24/36/48V     180-350W   100-150RPM

Most use in Electric scooter, Folding generation drive, scooter, Electric Bike,Drift car, Small train and So on.

 

Specifications:

Motor 12″brushless geared wheel motor
Voltage  24/36/48V
Rated Power 180-350W
Rated speed 100-150rpmn  or customized
Diameter of alex 15mm
Weight 3.75kg
Loading 80~300kg
Brake  Electronic brake(EABS)/Disc/Drum brake
Reduction ratio 1:5
Waterproof Rating IP54
Tire Inflated tire

How to Calculate Stiffness, Centering Force, Wear and Fatigue Failure of Spline Couplings

There are various types of spline couplings. These couplings have several important properties. These properties are: Stiffness, Involute splines, Misalignment, Wear and fatigue failure. To understand how these characteristics relate to spline couplings, read this article. It will give you the necessary knowledge to determine which type of coupling best suits your needs. Keeping in mind that spline couplings are usually spherical in shape, they are made of steel.
splineshaft

Involute splines

An effective side interference condition minimizes gear misalignment. When 2 splines are coupled with no spline misalignment, the maximum tensile root stress shifts to the left by 5 mm. A linear lead variation, which results from multiple connections along the length of the spline contact, increases the effective clearance or interference by a given percentage. This type of misalignment is undesirable for coupling high-speed equipment.
Involute splines are often used in gearboxes. These splines transmit high torque, and are better able to distribute load among multiple teeth throughout the coupling circumference. The involute profile and lead errors are related to the spacing between spline teeth and keyways. For coupling applications, industry practices use splines with 25 to 50-percent of spline teeth engaged. This load distribution is more uniform than that of conventional single-key couplings.
To determine the optimal tooth engagement for an involved spline coupling, Xiangzhen Xue and colleagues used a computer model to simulate the stress applied to the splines. The results from this study showed that a “permissible” Ruiz parameter should be used in coupling. By predicting the amount of wear and tear on a crowned spline, the researchers could accurately predict how much damage the components will sustain during the coupling process.
There are several ways to determine the optimal pressure angle for an involute spline. Involute splines are commonly measured using a pressure angle of 30 degrees. Similar to gears, involute splines are typically tested through a measurement over pins. This involves inserting specific-sized wires between gear teeth and measuring the distance between them. This method can tell whether the gear has a proper tooth profile.
The spline system shown in Figure 1 illustrates a vibration model. This simulation allows the user to understand how involute splines are used in coupling. The vibration model shows 4 concentrated mass blocks that represent the prime mover, the internal spline, and the load. It is important to note that the meshing deformation function represents the forces acting on these 3 components.
splineshaft

Stiffness of coupling

The calculation of stiffness of a spline coupling involves the measurement of its tooth engagement. In the following, we analyze the stiffness of a spline coupling with various types of teeth using 2 different methods. Direct inversion and blockwise inversion both reduce CPU time for stiffness calculation. However, they require evaluation submatrices. Here, we discuss the differences between these 2 methods.
The analytical model for spline couplings is derived in the second section. In the third section, the calculation process is explained in detail. We then validate this model against the FE method. Finally, we discuss the influence of stiffness nonlinearity on the rotor dynamics. Finally, we discuss the advantages and disadvantages of each method. We present a simple yet effective method for estimating the lateral stiffness of spline couplings.
The numerical calculation of the spline coupling is based on the semi-analytical spline load distribution model. This method involves refined contact grids and updating the compliance matrix at each iteration. Hence, it consumes significant computational time. Further, it is difficult to apply this method to the dynamic analysis of a rotor. This method has its own limitations and should be used only when the spline coupling is fully investigated.
The meshing force is the force generated by a misaligned spline coupling. It is related to the spline thickness and the transmitting torque of the rotor. The meshing force is also related to the dynamic vibration displacement. The result obtained from the meshing force analysis is given in Figures 7, 8, and 9.
The analysis presented in this paper aims to investigate the stiffness of spline couplings with a misaligned spline. Although the results of previous studies were accurate, some issues remained. For example, the misalignment of the spline may cause contact damages. The aim of this article is to investigate the problems associated with misaligned spline couplings and propose an analytical approach for estimating the contact pressure in a spline connection. We also compare our results to those obtained by pure numerical approaches.

Misalignment

To determine the centering force, the effective pressure angle must be known. Using the effective pressure angle, the centering force is calculated based on the maximum axial and radial loads and updated Dudley misalignment factors. The centering force is the maximum axial force that can be transmitted by friction. Several published misalignment factors are also included in the calculation. A new method is presented in this paper that considers the cam effect in the normal force.
In this new method, the stiffness along the spline joint can be integrated to obtain a global stiffness that is applicable to torsional vibration analysis. The stiffness of bearings can also be calculated at given levels of misalignment, allowing for accurate estimation of bearing dimensions. It is advisable to check the stiffness of bearings at all times to ensure that they are properly sized and aligned.
A misalignment in a spline coupling can result in wear or even failure. This is caused by an incorrectly aligned pitch profile. This problem is often overlooked, as the teeth are in contact throughout the involute profile. This causes the load to not be evenly distributed along the contact line. Consequently, it is important to consider the effect of misalignment on the contact force on the teeth of the spline coupling.
The centre of the male spline in Figure 2 is superposed on the female spline. The alignment meshing distances are also identical. Hence, the meshing force curves will change according to the dynamic vibration displacement. It is necessary to know the parameters of a spline coupling before implementing it. In this paper, the model for misalignment is presented for spline couplings and the related parameters.
Using a self-made spline coupling test rig, the effects of misalignment on a spline coupling are studied. In contrast to the typical spline coupling, misalignment in a spline coupling causes fretting wear at a specific position on the tooth surface. This is a leading cause of failure in these types of couplings.
splineshaft

Wear and fatigue failure

The failure of a spline coupling due to wear and fatigue is determined by the first occurrence of tooth wear and shaft misalignment. Standard design methods do not account for wear damage and assess the fatigue life with big approximations. Experimental investigations have been conducted to assess wear and fatigue damage in spline couplings. The tests were conducted on a dedicated test rig and special device connected to a standard fatigue machine. The working parameters such as torque, misalignment angle, and axial distance have been varied in order to measure fatigue damage. Over dimensioning has also been assessed.
During fatigue and wear, mechanical sliding takes place between the external and internal splines and results in catastrophic failure. The lack of literature on the wear and fatigue of spline couplings in aero-engines may be due to the lack of data on the coupling’s application. Wear and fatigue failure in splines depends on a number of factors, including the material pair, geometry, and lubrication conditions.
The analysis of spline couplings shows that over-dimensioning is common and leads to different damages in the system. Some of the major damages are wear, fretting, corrosion, and teeth fatigue. Noise problems have also been observed in industrial settings. However, it is difficult to evaluate the contact behavior of spline couplings, and numerical simulations are often hampered by the use of specific codes and the boundary element method.
The failure of a spline gear coupling was caused by fatigue, and the fracture initiated at the bottom corner radius of the keyway. The keyway and splines had been overloaded beyond their yield strength, and significant yielding was observed in the spline gear teeth. A fracture ring of non-standard alloy steel exhibited a sharp corner radius, which was a significant stress raiser.
Several components were studied to determine their life span. These components include the spline shaft, the sealing bolt, and the graphite ring. Each of these components has its own set of design parameters. However, there are similarities in the distributions of these components. Wear and fatigue failure of spline couplings can be attributed to a combination of the 3 factors. A failure mode is often defined as a non-linear distribution of stresses and strains.

China Professional Low Speed 4096 Encoder 12inch 500W DC Electric Brushless Agv Drive Wheel Hub Motor   near me factory China Professional Low Speed 4096 Encoder 12inch 500W DC Electric Brushless Agv Drive Wheel Hub Motor   near me factory

China high quality Magicwheel 24V 500W Brushless Motor Wheelchair Drive Motors Electric Wheelchair Motor Kit with Free Design Custom

Product Description

MagicWheel Specification
Battery Specification Performance Specification Dimensional Specification
Battery 18650 Lithium-ion Max. Speed 6km/h (5 speeds) Size 900*860*560 mm
Charging Battery or 
Direct Charging
Motor Brushless Permanent 
Magnet Motor
Max Weight 
Capacity
150 kg
Charging Time 2.5 hours Controller Infinitics in-house  Total weight 62 kg (package)
Endurance 16 km Motor Power 250W*2 Capacity 1 Adult
Battery Weight 3 kg Brake Electromagnetic Rear Light LED
Environment
Temperature
-15°~40° Braking 
distance
0.6 meters/ dry condition
0.7 meters/wet condition
Transportation
Packagings
890*590*490
690*590*560
Battery Size 115*150*250 mm Torque 2.1 N.m Total Volume 0.44 cbm
Cell Automobile grade 
power cell
Wading 
Depth
50 mm Material Anodic Aluminum 
Oxide (AAO)
Battery capacity 10AH 24V Damping  Front Damper Front wheels omnidirectional

MagicWheel (previous known as Autour), 4 wheels electric and intelligent wheelchair with omnidirectional front wheels from originated Manufacturer, brings independence, fun, luxury and first-class experience to its users with ergonomic and aesthetics mindset.

Designed for both outdoor adventures and indoor companion, MagicWheel is a hybrid of electric wheelchair and mobility scooter.

Excellent operation experience comes from
Brush-less Permanent Magnet Motor Durable and powerful; 100,000 hours lifespan
Intelligent Central Controller Infinitics in-house designed Cloud ECU with OTA
Outstanding and Secure Li-ion Battery 10 Ah 24V Tesla’s 18650 Lithium-ion Cells

MagicWheel is designed for Simply Moving.

  1. Simply moving by just 1 joystick and immediately stop by releasing the joystick without slipping
  2. Long endurance of 16 km and the fastest speed of 6 km/h, calm and quiet
  3. More practical than folding electric wheelchair, MagicWheel can be easily disassembled in to 3 pieces in 15 seconds
  4. The heaviest piece is 19kg. No pressure at all to carry and store in the car trunk
  5. Friendly for new users with great fun

    MagicWheel is designed for All Terrain.

    1. Performance of MagicWheel is distinguished from other electric wheelchair or scooter in terms of coping with complex road conditions
    2. Superb accessibility and driving CZPT of MagicWheel demonstrated by the proven travel records to parks by metro and international travel by airplane and cruise
    3. Barrier free to go by car, bus, metro/subway, train or plane
    4. Unique and innovative omnidirectional wheels gives the best turning radium to go through narrow space

    Highlights of MagicWheel’s omnidirection front wheels
    The composition of each front wheel 24 small wheels
    Vertical Obstacle Clearance 6 cm
    Easily Turning in small spaces 76 cm the best in the market
    Climbing performance 10 °
    Horizontal Obstacle Clearance 15 cm

    MagicWheel is designed for Safety.

    1. Anti-slipping
    2. Anti-turnover
    3. LED warning light
    4. Seat-belt
    5. Rigorous product testings passed
    6. Battery MSDS report

    MagicWheel is designed for Comfy.

    1. The backrest and armrest can be adjusted by users’ needs
    2. Flip-up armrest for easy access from both sides
    3. Selected T-sens sitting cushion is waterproof, anti-slip, anti-bedsore, breathable and fire retardant
    4. Proven records of the CZPT of the body pressure dispersion than the normal cushions

    MagicWheel is designed for Poshness.

    1. Go outside with great confidence
    2. Three colors available Bentley White, Porsche Gray and Ferrari Red

    Q&A
    Q: Can the seat height be adjusted automatically?
    A: It can be adjusted manually. Usually the wheelchair is a personal item. After the angle and height are adjusted to the most comfortable status, there is no need for repeated adjustments.

    Q: What material is your product made of? Is it safe enough?
    A: The frame material is aviation aluminum and stamped sheet, and the shell is injection molded of ABS+PC engineering plastics. The load-bearing capacity of the whole vehicle is 150 kg. This weight can ensure that the scooter is unimpeded on the standard road surface prescribed by each country, and there will be no problems with other scooters such as slipping and rollover.

    Q: Why doesn’t your scooter have 2 pedals?
    A: In order to allow users to get enough movement area for their feet while sitting, without being restricted, we use a whole pedal. This pedal is very strong and can withstand 100 kg.
    And our pedal can be lifted up, so that users can easily get on or get off.

    Q: Is there a remote controller?
    A: Yes, but that is an optional feature.

    Q: Quality problems and service life of batteries?
    A: The battery is a lithium battery, which uses CZPT batteries.
    The power loss of our battery cell is 20% after it is charged and discharged 1,000 times, which means it will have 80% of the remaining power after 3 years normally.
    If you feel that the battery is not enough, you can buy 1 battery more, which can be replaced at any time.

    Q: The service life of the scooter
    A: The electrical part (battery, motor, and controller) is guaranteed for 1 year, and the frame is 3 years.
    The wheels are maintenance-free. The theoretical operating distance of the front wheels is 30,000 to 50,000 kilometers, the rear wheels are solid tires, and the rubber tires are maintenance-free.
    The cushion can be replaced according to actual needs.
    The whole scooter can basically be used for 8-10 years.

    Q: Is your scooter fold-able?
    A: Our scooter can be disassembled into 3 parts in 15 seconds, the heaviest part is 19 kg, which is lighter than the fold-able wheelchairs on the market and is more convenient to carry.
    [Battery 2.6 kg, seat 14 kg, front frame 14 kg, rear frame 19 kg], it is very convenient to store, transport and travel. You may have seen other fold-able scooter, the weight is almost 30 kilograms, it is very heavy to move.

    Q: The weight of MagicWheel?
    A: MagicWheel designs for both outdoor adventure and indoor companion. The weight of MagicWheel is 50 kg, for the sake of user safety and the stability of the scooter itself.

    Q: What is the seat width of MagicWheel?
    A: The width of ordinary wheelchairs on the market is between 420-510mm, and ours is 460mm. Most people can use it. The width of the whole scooter is 560. Normal doors can pass through.

    Q: Can MagicWheel be equipped with front lights?
    A: Every users’ needs are different and diverse. Many of our users install small accessories on the scooter according to their favorite styles. It can be fitted with cup holders and bright flashlights.

    Q: Can the light strip on the back be turned off?
    A: The light strip at the back is a reminder to the pedestrians behind and a protection for us, especially at night or in a dark place. The power consumption is very small and can be ignored.
    You can disconnect it by loosening the connection point of the wire connecting the light strip under the seat but which is NOT recommended.

    Q: Does MagicWheel have emergency braking? What is the principle of braking?
    MagicWheel is different from general motor brakes. It uses electromagnetic brakes. Releasing the joystick, it stops immediately.

    About usage
    Q: Can MagicWheels travel on planes?
    A: Most airlines have rules that a single battery should not exceed 300Wh. The battery of MagicWheel is 240Wh. You need to remove the battery and bring it with you, and then the scooter body can be checked in before boarding. Please bear in mind that contact with the airline at least 48 hours in advance before the departure time.

    Q: Can MagicWheel enter parks and shopping malls?
    A: The speed of the MagicWheel scooter is only 6 km/h, which is about the same as the walking speed of pedestrians. It is also small in size and can enter shopping malls and parks.

    Q: What should I do if I run out of power when I go out on the road?
    A: There is a battery indicator on the armrest of our scooter. Observe the battery indicator before use. If you are going to have a long-distance trip, please charge it 1 day in advance.

    In case of power or scooter failure, please switch the 2 red wrenches at the bottom of rear frame to manual mode, therefore it can be pushed to move.

    Q: Can MagicWheel be replaced with left-handed operation?
    A: Yes, if you need to use the left-handed operation, you can make a note with the customer service when you buy it. It will be set up in the factory before delivering.

    Q: Can I use MagicWheel in the cold winter? What about the battery loss?
    A: The battery does lose some power due to the low temperature. Users must pay attention to the power indicator and plan their own itinerary.

    Q: Is your scooter easy to get started?
    A: Our car uses joystick control and electromagnetic brakes, which is very friendly and suitable for the elderly to learn.

    Q: Can I take the subway/metro with MagicWheel?
    A: Yes, absolutely, because of the unique design of the front wheels, coupled with the powerful dual-motor drive, MagicWheel can pass the gap and enter the carriage from the platform easily without help.

    Q: Can the battery be optional?
    A: MagicWheel currently sells 1 type of battery only. We will update batteries of different capacities in short future.

    Q: Can MagicWheel be put in the trunk of an ordinary car after disassembled? After putting it in the trunk, is it impossible to load other things?
    A: Yes. Large items may not fit, but small items can still fit a lot.

    Screw Shaft Types

    A screw shaft is a cylindrical part that turns. Depending on its size, it is able to drive many different types of devices. The following information outlines the different types of screws, including their sizes, material, function, and applications. To help you select the right screw shaft, consider the following factors:
    screwshaft

    Size

    A screw can come in a variety of shapes and sizes, ranging from a quarter to a quarter-inch in diameter. A screw is a cylindrical shaft with an inclined plane wrapped around it, and its main function is to fasten objects together by translating torque into a linear force. This article will discuss the dimensions of screws and how to determine the size of a screw. It is important to note that screw sizes can be large and small depending on the purpose.
    The diameter of a screw is the diameter of its shaft, and it must match the inner diameter of its nuts and washers. Screws of a certain diameter are also called machine screws, and they can be larger or smaller. Screw diameters are measured on the shaft underneath the screw head. The American Society of Mechanical Engineers (ASME) standardized screw diameters in 3/50-inch to 16 (3/8-inch) inches, and more recently, sizes were added in U.S. fractions of an inch. While shaft and head diameters are standardized, screw length may vary from job to job.
    In the case of the 2.3-mm screw group, the construct strength was not improved by the 1.2-mm group. The smaller screw size did not increase the strength of the construct. Further, ABS material did not improve the construct strength. Thus, the size of screw shaft is an important consideration in model design. And remember that the more complex your model is, the larger it will be. A screw of a given size will have a similar failure rate as a screw of a different diameter.
    Although different screw sizes are widely used, the differences in screw size were not statistically significant. Although there are some limitations, screws of different sizes are generally sufficient for fixation of a metacarpal shaft fracture. However, further clinical studies are needed to compare screw sizes for fracture union rates. So, if you are unsure of what size of screw shaft you need for your case, make sure to check the metric chart and ensure you use the right one.
    screwshaft

    Material

    The material of a screw shaft plays an important role in the overall performance of a screw. Axial and central forces act to apply torque to the screw, while external forces, such as friction, exert a bending moment. The torsional moments are reflected in the torque, and this causes the screw to rotate at a higher rate than necessary. To ensure the longevity of the screw, the material of the screw shaft should be able to handle the bending moment, while the diameter of the shaft should be small enough to avoid causing damage.
    Screws are made from different metals, such as steel, brass, titanium, and bronze. Manufacturers often apply a top coating of chromium, brass, or zinc to improve corrosion resistance. Screws made of aluminum are not durable and are prone to rusting due to exposure to weather conditions. The majority of screw shafts are self-locking. They are suited for many applications, including threaded fasteners, C-clamps, and vises.
    Screws that are fabricated with conical sections typically feature reduced open cross-sectional areas at the discharge point. This is a key design parameter of conical screw shafts. In fact, reductions of up to 72% are common across a variety of applications. If the screw is designed to have a hard-iron hanger bearing, it must be hardened. If the screw shaft is not hardened, it will require an additional lubricant.
    Another consideration is the threads. Screw shafts are typically made of high-precision threads and ridges. These are manufactured on lathes and CNC machines. Different shapes require different materials. Materials for the screw shaft vary. There are many different sizes and shapes available, and each 1 has its own application. In addition to helical and conical screw shafts, different materials are also available. When choosing material, the best 1 depends on the application.
    The life of the screw depends on its size, load, and design. In general, the material of the screw shaft, nut body, and balls and rollers determine its fatigue life. This affects the overall life of the screw. To determine whether a specific screw has a longer or shorter life, the manufacturer must consider these factors, as well as the application requirements. The material should be clean and free of imperfections. It should be smooth and free of cracks or flaking, which may result in premature failure.

    Function

    The function of a screw shaft is to facilitate the rotation of a screw. Screws have several thread forms, including single-start, double-start and multi-start. Each form has its own advantages and disadvantages. In this article we’ll explore each of them in detail. The function of a screw shaft can vary based on its design, but the following are common types. Here are some examples of screw shaft types and their purposes.
    The screw’s torque enables it to lift objects. It can be used in conjunction with a bolt and nut to lift a load. Screws are also used to secure objects together. You can use them in screw presses, vises, and screw jacks. But their primary function is to hold objects together. Listed below are some of their main functions. When used to lift heavy loads, they can provide the required force to secure an object.
    Screws can be classified into 2 types: square and round. Square threads are more efficient than round ones because they apply 0deg of angle to the nut. Square threads are also stronger than round threads and are often used in high-load applications. They’re generally cheaper to manufacture and are more difficult to break. And unlike square threads, which have a 0deg thread angle, these threads can’t be broken easily with a screwdriver.
    A screw’s head is made of a series of spiral-like structures that extend from a cylindrical part to a tip. This portion of the screw is called the shank and is made of the smallest area. The shank is the portion that applies more force to the object. As the shaft extends from the head, it becomes thinner and narrow, forming a pointed tip. The head is the most important part of the screw, so it needs to be strong to perform its function.
    The diameter of the screw shaft is measured in millimeters. The M8 screw has a thread pitch of 1.25 mm. Generally, the size of the screw shaft is indicated by the major and minor diameter. These dimensions are appended with a multiplication sign (M8x1).
    screwshaft

    Applications

    The design of screws, including their size and shape, determines their critical rotating speeds. These speeds depend on the threaded part of the screw, the helix angle, and the geometry of the contact surfaces. When applied to a screw, these limits are referred to as “permissible speed limits.” These maximum speeds are meant for short periods of time and optimized running conditions. Continuous operation at these speeds can reduce the calculated life of a nut mechanism.
    The main materials used to manufacture screws and screw shafts include steel, stainless steel, titanium, bronze, and brass. Screws may be coated for corrosion resistance, or they may be made of aluminium. Some materials can be threaded, including Teflon and nylon. Screw threads can even be molded into glass or porcelain. For the most part, steel and stainless steel are the most common materials for screw shafts. Depending on the purpose, a screw will be made of a material that is suitable for the application.
    In addition to being used in fasteners, screw shafts are used in micrometers, drillers, conveyor belts, and helicopter blades. There are numerous applications of screw shafts, from weighing scales to measuring lengths. If you’re in the market for a screw, make sure to check out these applications. You’ll be happy you did! They can help you get the job done faster. So, don’t delay your next project.
    If you’re interested in learning about screw sizing, then it’s important to know the axial and moment loads that your screws will experience. By following the laws of mechanics and knowing the load you can calculate the nominal life of your screw. You can also consider the effect of misalignment, uneven loading, and shocks on your screw. These will all affect the life of your screw. Then, you can select the right screw.

    China high quality Magicwheel 24V 500W Brushless Motor Wheelchair Drive Motors Electric Wheelchair Motor Kit   with Free Design CustomChina high quality Magicwheel 24V 500W Brushless Motor Wheelchair Drive Motors Electric Wheelchair Motor Kit   with Free Design Custom

    China factory CZPT CE ISO9001 6.5 Inch 24V 48V 100kg Load Gearless DC Brushless Electric Moving Robot Direct Drive Wheel Hub Motor with Encoder near me factory

    Product Description

    ZLTECH CE ISO9001 6.5 Inch 24V 48V 100kg load gearless DC Brushless electric moving robot direct drive Wheel Hub Motor with encoder

    Packaging & Shipping

    Package: carton with foam, QTY per carton will depend on the hub motor size.

    Shipping: goods will be deliveried by air(EMS, DHL, FedEx,TNT etc), by train or by boat according to your requirements.

    FAQ

    1. Factory or trader?
    We are factory, and have professional R&D team as introduced in company information.

    2. How about the delivery?
    – Sample: 3-5 days.
    – Bulk order: 15-30 days.

    3. What is your after-sales services?
    1. Free maintenance within 12 months guarantee, lifetime consultant.
    2. Professional solutions in installation and maintence.

    4. Why choose us?
    1. Factory Price & 24/7 after-sale services.
    2. From mold customization to material processing and welding, from fine components to finished assembly, 72 processes, 24 control points, strict aging, finished product inspection.

     

    What is a drive shaft?

    If you notice a clicking noise while driving, it is most likely the driveshaft. An experienced auto mechanic will be able to tell you if the noise is coming from both sides or from 1 side. If it only happens on 1 side, you should check it. If you notice noise on both sides, you should contact a mechanic. In either case, a replacement driveshaft should be easy to find.
    air-compressor

    The drive shaft is a mechanical part

    A driveshaft is a mechanical device that transmits rotation and torque from the engine to the wheels of the vehicle. This component is essential to the operation of any driveline, as the mechanical power from the engine is transmitted to the PTO (power take-off) shaft, which hydraulically transmits that power to connected equipment. Different drive shafts contain different combinations of joints to compensate for changes in shaft length and angle. Some types of drive shafts include connecting shafts, internal constant velocity joints, and external fixed joints. They also contain anti-lock system rings and torsional dampers to prevent overloading the axle or causing the wheels to lock.
    Although driveshafts are relatively light, they need to handle a lot of torque. Torque applied to the drive shaft produces torsional and shear stresses. Because they have to withstand torque, these shafts are designed to be lightweight and have little inertia or weight. Therefore, they usually have a joint, coupling or rod between the 2 parts. Components can also be bent to accommodate changes in the distance between them.
    The drive shaft can be made from a variety of materials. The most common material for these components is steel, although alloy steels are often used for high-strength applications. Alloy steel, chromium or vanadium are other materials that can be used. The type of material used depends on the application and size of the component. In many cases, metal driveshafts are the most durable and cheapest option. Plastic shafts are used for light duty applications and have different torque levels than metal shafts.

    It transfers power from the engine to the wheels

    A car’s powertrain consists of an electric motor, transmission, and differential. Each section performs a specific job. In a rear-wheel drive vehicle, the power generated by the engine is transmitted to the rear tires. This arrangement improves braking and handling. The differential controls how much power each wheel receives. The torque of the engine is transferred to the wheels according to its speed.
    The transmission transfers power from the engine to the wheels. It is also called “transgender”. Its job is to ensure power is delivered to the wheels. Electric cars cannot drive themselves and require a gearbox to drive forward. It also controls how much power reaches the wheels at any given moment. The transmission is the last part of the power transmission chain. Despite its many names, the transmission is the most complex component of a car’s powertrain.
    The driveshaft is a long steel tube that transmits mechanical power from the transmission to the wheels. Cardan joints connect to the drive shaft and provide flexible pivot points. The differential assembly is mounted on the drive shaft, allowing the wheels to turn at different speeds. The differential allows the wheels to turn at different speeds and is very important when cornering. Axles are also important to the performance of the car.

    It has a rubber boot that protects it from dust and moisture

    To keep this boot in good condition, you should clean it with cold water and a rag. Never place it in the dryer or in direct sunlight. Heat can deteriorate the rubber and cause it to shrink or crack. To prolong the life of your rubber boots, apply rubber conditioner to them regularly. Indigenous peoples in the Amazon region collect latex sap from the bark of rubber trees. Then they put their feet on the fire to solidify the sap.
    air-compressor

    it has a U-shaped connector

    The drive shaft has a U-joint that transfers rotational energy from the engine to the axle. Defective gimbal joints can cause vibrations when the vehicle is in motion. This vibration is often mistaken for a wheel balance problem. Wheel balance problems can cause the vehicle to vibrate while driving, while a U-joint failure can cause the vehicle to vibrate when decelerating and accelerating, and stop when the vehicle is stopped.
    The drive shaft is connected to the transmission and differential using a U-joint. It allows for small changes in position between the 2 components. This prevents the differential and transmission from remaining perfectly aligned. The U-joint also allows the drive shaft to be connected unconstrained, allowing the vehicle to move. Its main purpose is to transmit electricity. Of all types of elastic couplings, U-joints are the oldest.
    Your vehicle’s U-joints should be inspected at least twice a year, and the joints should be greased. When checking the U-joint, you should hear a dull sound when changing gears. A clicking sound indicates insufficient grease in the bearing. If you hear or feel vibrations when shifting gears, you may need to service the bearings to prolong their life.

    it has a slide-in tube

    The telescopic design is a modern alternative to traditional driveshaft designs. This innovative design is based on an unconventional design philosophy that combines advances in material science and manufacturing processes. Therefore, they are more efficient and lighter than conventional designs. Slide-in tubes are a simple and efficient design solution for any vehicle application. Here are some of its benefits. Read on to learn why this type of shaft is ideal for many applications.
    The telescopic drive shaft is an important part of the traditional automobile transmission system. These driveshafts allow linear motion of the 2 components, transmitting torque and rotation throughout the vehicle’s driveline. They also absorb energy if the vehicle collides. Often referred to as foldable driveshafts, their popularity is directly dependent on the evolution of the automotive industry.
    air-compressor

    It uses a bearing press to replace worn or damaged U-joints

    A bearing press is a device that uses a rotary press mechanism to install or remove worn or damaged U-joints from a drive shaft. With this tool, you can replace worn or damaged U-joints in your car with relative ease. The first step involves placing the drive shaft in the vise. Then, use the 11/16″ socket to press the other cup in far enough to install the clips. If the cups don’t fit, you can use a bearing press to remove them and repeat the process. After removing the U-joint, use a grease nipple Make sure the new grease nipple is installed correctly.
    Worn or damaged U-joints are a major source of driveshaft failure. If 1 of them were damaged or damaged, the entire driveshaft could dislocate and the car would lose power. Unless you have a professional mechanic doing the repairs, you will have to replace the entire driveshaft. Fortunately, there are many ways to do this yourself.
    If any of these warning signs appear on your vehicle, you should consider replacing the damaged or worn U-joint. Common symptoms of damaged U-joints include rattling or periodic squeaking when moving, rattling when shifting, wobbling when turning, or rusted oil seals. If you notice any of these symptoms, take your vehicle to a qualified mechanic for a full inspection. Neglecting to replace a worn or damaged u-joint on the driveshaft can result in expensive and dangerous repairs and can cause significant damage to your vehicle.

    China factory CZPT CE ISO9001 6.5 Inch 24V 48V 100kg Load Gearless DC Brushless Electric Moving Robot Direct Drive Wheel Hub Motor with Encoder   near me factory China factory CZPT CE ISO9001 6.5 Inch 24V 48V 100kg Load Gearless DC Brushless Electric Moving Robot Direct Drive Wheel Hub Motor with Encoder   near me factory

    China Good quality Shuagnye 26 Inch MID Drive Electric Bike 250W Motor 7 Speed near me factory

    Product Description

    Shuagnye 26 inch mid drive electric bike 250w motor 7 speed

    Detail Image

    Motor
    Different with hub motor, 350w mid dirve CZPT motor is not built into the wheel, but is usually mounted near the bottom of bike frame.  Thus the propulsion is provided at the pedals rather than at the wheel, being eventually applied to the wheel via the bike’s drive train. Because the power is applied through the chain and sprocket, the mid drive electric bike use 250 watts or 350 watts motor power, which can better to protect against fast wear on the drivetrain. 

    Display
    Equipped with a mid drive motor CZPT LCD display and a three-button control element. The large display panel informs about all important driving data like speed, support level, driving distance, battery status and time. The up and down buttons can adjust Pedal-Assist Level(from 0 to 5). The front light can be switched on at night or in bad weather.

    Headlight
    A 3W bright front LED light for night riding to ensure your riding safety, and equipped with a mobile phone charging port for your phone on low battery power. 

    Brake
    To make ensure each rider have a comfortable and security cycling condition, we use a pair of  aluminum alloy brake lever and 160 mechanical disc brake system on each mid drive ebike. Both of them can stop the bicycle front wheel or rear wheel easily when rider press the aluminum alloy lever.

    Battery
    This mid drive ebike use hidden battery design which is in the bike frame, and was allowed 36V 10AH lithium battery. And on a sigle full charging, this mid drive ebike’s HangZhouage range can get 25-30 HangZhous under E-bike mode and 50-60 HangZhous under Pedal-Assisted mode. Combine 2 modes, help you cycling easily and faster than normal bike. And its removable function make you take out the battery easily to charge at any place where have sockets. And Its charging time is 5-7 hours.

    Specification

    Model A6AH26MD
    Motor 250w/350w CZPT mid drive motor
    PAS 1:1 intelligent pedal assistant system/only pedal assistant
    Battery 36V10AH hidden lithium battery
    Range 1:1 PAS mode,40-60KM
    Controller Intelligent brushless 36V
    Charger AC100V-240V,42V2A
    Charging time 6-8 hours
    Max speed 25-30km/h
    Loading 100-120kg
    Frame Aluminum alloy
    Tyre 26″*1.95/27.5″*1.95
    Rim Aluminum alloy Rim or Double Rim
    Front fork Aluminum alloy suspension
    Front brake 160 mechanical disc brake
    Rear brake 160 mechanical disc brake
    Derailleur 7 gears
    Handle bar Aluminum alloy
    Brake lever Aluminum,cut-off when braking
    Chain Rust resistant chain
    Saddle Comfortable saddle
    Pedal Aluminum alloy
    Front light 3W LED light with USB charging port
    warranty (Battery,motor,controller,charger) 1 year
    Battery first year capacity > 80%,second year capacity >65%

    FAQ
    1. What’s the minimum ebike order MOQ?
       MOQ 10pc
    2. How long is delivery time?
        2 days to 30 days, depend on model and quantity
    3. Can I order spare parts?
       Yes, we have all parts list available for our models
    4. How about warranty ?
        alloy frame 36 months, motor 24 months, lithium battery 12 months, controller 12 months.
    5. Is sample available?
        Yes, sample order is acceptable, but there will be extra cost.
    6. Can i choose the colors ?
        Yes, there would be extra cost.
    7. What certificate do you have for electric bicycle?
        Every electric bicycle has CE/EN15194 certificate for EU
    8. Could I use my own LOGO or design on goods?
        Yes. When order quantity is big, you can use your own LOGO or your language manual etc.

    Company information
          As professional manufacturer engaged  in  the research, development, production, sale and service,we are committed to manufacturing electric bike, electric bike lithium battery, charger, lithium battery BMS and electric bike controller. 

    1. Good knowledge on different market can meet special requirements.

    2. Real manufacturer with our own factory located in HangZhou,ZheJiang ,China

    3. Strong professional technical team ensure to produce the top quality electric bike. 

    4. Special cost control system ensure to provide the most favorable price.

    5. Rich experience on manufacture field with 14 years’ product electric bike battery.

    Our service
    our company HangZhou shuangye produce electric bike,ebike kit,ebike battery more than 8 years.
    enjoy high repution in our industries.
    the more about us you can visit our website:  http://zhsydz
    or leave a message for us,we will reply you in first time.

    Axle Spindle Types and Installation

    Are you looking for a new axle spindle for your vehicle? If so, you’ve come to the right place. Learn more about their types, functions, and installation. After reading this article, you’ll be well on your way to finding your new axle spindle. Axle spindles are essential to your vehicle. There are several types and each has unique characteristics. Here’s how to choose the best 1 for your car.

    Dimensions

    Axle spindle dimensions are crucial for safe wheel support. This component experiences significant stress and load during bearing mounting and must provide sufficient strength. The axle spindle can be hot-forged or shaped to include an integral shoulder. The shape of the bearing stop region must be abruptly transitioned from a straight to a curved configuration. Dimensions of axle spindle vary with different materials, manufacturing techniques, and applications.
    The bearing surfaces of the axle spindle are 1.376 inches across, while the bearing spacer is 1.061 inch across. The axle spindle is 1.376 inches long and includes a cotter pin and nut. Typical axle spindle dimensions are listed below. Some axles may have additional components to reduce their weight, while others may not have any. The number of axles and bearings is also important to consider when determining the dimensions of the axle.
    The outside shape of the axle spindle 40 is similar to that of the prior art spindle 10. The outer wheel bearing region 44 is cylindrical with a diameter D 1 and an inner wheel bearing region 46. An axially-separating transition region 48 separates the inner bearing region 46 from the outer wheel bearing region 44. It is important to note that the internal diameter is generally slightly larger than the outer wheel bearing region 46.
    Axle spindles can be integrally formed or welded to the housing or central beam. They can also be designed differently depending on the intended function. For example, the trailer axle spindle may have a circular or rectangular cross section. Once again, axle spindles are important for safety and longevity, so it is important to know their dimensions. You can also check online for the dimensions of axle spindles.
    Driveshaft

    Function

    Axle spindles are crucial components of a vehicle’s suspension system. They enable a vehicle to move forward, turn, brake, and accelerate. The axle also supports the wheel bearings. In addition to supporting the wheel hub, the axle spindle connects the arms of each wheel to the chassis. This piece is also known as a steering knuckle. The axle spindle’s job is to provide sufficient strength to support the axle.
    The functional elements of an axle spindle are cylindrical and have a transition region and an outer surface with an irregular pattern. They have a first and a second diameter, and are shaped to form the spindle’s beam portion and spindle region. The transition region forms a pivotal connection between the axle and the suspension. It also provides the connection between the axle and the trailer. It allows a vehicle to rotate without causing excessive vibrations.
    Axle spindles can be circular in structure and are similar to those of the prior art. They support wheel hub configurations. The first end of a spindle is threaded, while the second end is open. The outer wheel bearing region has an outer surface with a diameter D1, while the inner wheel bearing region 46 has a cylindrical outer surface with a diameter D2. The transition region separates the spindle from the rest of the axle.
    The spindle nut retains the wheel hub on the spindle, whereas the spindle nut holds the hub assembly in place. A spindle nut retains the wheel on the spindle. A hub cap protects the locking nut assembly and lubrication area. A hub cap is also a common component of the axle. The hub cap also provides a protective shield for the spindle nut.
    Steering axle spindles do not extend to the right of the oil seal. They extend from the steering kunckle, which is pivotally joined to the steering axle beam. Despite the differences in bearing seals, wheel hub mounting means, and brake assemblies, the basic spindle configuration is the same. A spindle consists of 2 axially separated bearing regions, 1 with a larger diameter than the other, with a bearing stop adjacent to the inner bearing region.
    Driveshaft

    Types

    The axle is the basic unit of an automobile, and it includes several components. Among these are bearings, axle housings, and wheel hubs. Bearings and axle housings take on all of the radial loads placed on them during operation. As a result, they are necessary to ensure that a vehicle is able to function at its optimum level. But if you’re not sure what these components are, they can make all the difference in your ride.
    Axle type depends on a number of factors, including the amount of force produced. In some cases, the vehicle already has pre-designed axles that come in standard formats, but in other cases, a customer can order a custom-made axle for the specific needs of his vehicle. Customized axles give the vehicle operator greater control over the speed and torque of the wheels. To choose the correct axle type for your vehicle, it’s helpful to know the measurements of the axle.
    Axle gear sets and lubrication passages are also different. Reverse-cut gears can’t be used in place of standard cut gears, and vice-versa. The 2 types of axle are compatible, but the spline count of the differential case must match that of the axle. It’s important to remember that a different type of axle may work with a different type of machine tool.
    Different axle spindle materials have their own advantages and disadvantages. Some are more durable than others, depending on their load capacity. Disc brake hubs and axle spindles are similar to the non-braking ones, but include a rotor and a caliper yoke. The yoke design on the rotor or caliper spindle is specific for each rotor.
    Bearing-type axles are the most durable. They transfer the weight of the vehicle to the axle casing. The axle housing is retained by a flange bolted to the hub, and the axle bearings are secured on the spindle by a large nut. Alternatively, axles with bearings are supported solely on the axle spindle and don’t require a hub. Floating axles are typically better for long-term operation, but may be a limited choice for vehicles.
    Driveshaft

    Installation

    Axle spindle installation involves tightening the axle spindle nut to retain the spacer and bearing cones in position. When properly tightened, the axle spindle nut provides the clamp force required to compress the bearing spacer and bearing cone. Preloading is an important part of axle spindle installation because it optimizes bearing life by limiting the tolerance range of end play. Here are some tips on axle spindle installation.
    To start the process, you should remove the axle spindle from the vehicle. If the old spindle is not a bolt-on type, a technician will need to cut the weld that holds the axle spindle in place. Then, he or she would need to thread the new spindle back into place. The axle tube must be threaded to accept the new spindle. Once the axle spindle is properly installed, the technician will need to tighten it to the specified torque.
    Once the axle spindle is installed, the technician will continue tightening the nut assembly. To ensure a tight grip, the technician will rotate the outer washer while adjusting the torque level on the axle spindle nut. If the nut is not correctly torqued, it may loosen the axle spindle. In addition, improper torque can cause excessive inboard pressure on the outer nut, which can result in over or under-compression of the bearing cone.
    The second axle spindle includes an inboard bearing 54 and an outboard bearing 56. The inboard bearing has an inboard surface that abuts the shoulder 26 of the axle spindle. The outboard bearing 57 is mounted on the axle spindle near its outboard end. A bearing spacer 58 is positioned between the inboard and outboard bearings. The spacer and bearing cone group comprises the bearing cones 54 and 56.
    Proper alignment of the new spindle is essential for a secure fit. Taking your trailer to a licensed repair facility for a trailer spindle installation is a good idea, as a poorly installed axle can result in improper wheel tracking and premature tire wear. A licensed trailer repair facility can do this for you without much difficulty. This way, you won’t waste your time or frustration on a DIY trailer axle replacement.

    China Good quality Shuagnye 26 Inch MID Drive Electric Bike 250W Motor 7 Speed   near me factory China Good quality Shuagnye 26 Inch MID Drive Electric Bike 250W Motor 7 Speed   near me factory

    China Custom 104mm Brushless DC Motorcycle 36V Electric Motor High Torque Direct Drive Motor with Free Design Custom

    Product Description

    104mm Brushless DC motorcycle 36V Electric Motor High Torque Direct Drive Motor

    Product Description

    Item Specifications
    Efficiency IE 2
    Rated Speed 2000rpm/2500rpm
    Rated Voltage 24V  36V  48V  110V  220V
    Radial Watt 200W  /  400W
    Rated Torque 0.764N.m
    Max radial force 220N/20mm from the flange

    Product Specifications
     Brushless DC Motor 

    If you need the other product dimensions plese contect us. We will provide you with more complete product drawings.

    Product Details

    DC motor simple structure, high efficiency and can rotate continue. high efficiency, running soomthly, strong reliability, easy to use, long life low noise, Brushless environmental protection. Accurate speed control.
    Success Case

    Brushless dc motor has a good starting and speed control performance, often used in the occasion of starting and speed regulation have higher requirements, such as a large reversible rolling mill, mine hoist, electric locomotives, diesel locomotive, city tram, subway trains, electric bicycle.

    Company Profile

    LUNYEE INDUSTRIES DEVELOPMENT CO., LIMITED was founded in 2007, is a leading manufacturer for factory automation(FA) products. We are dedicated in power transmission and motion control solutions. A satisfying one-stop service comes from our continuous innovation team and our rigorously-inspected sub-contractors.

    Packing & Delivery

    Packing Method
    1.Outer packing: Standard export carton with required shipping marks
    2.Inner packing: Waterproof packing with shock absorbing EPE and cardboard surrounded
    3.As per the clients requirements

    Shipment Method
    We will ship the items after the payment.
    We can ship to you by UPS/DHL/TNT/EMS/Fedex,by air and by sea.  
    For the Countries & Regions where EMS cannot deliver,pls choose other shipping ways;
    Pls contact us directly and we will use your preferred ways

    Our Services

    1. Free maintenance within 12 months guarantee
    2. Professional research and development team
    3. Technical support for installation
    4. Strict quality control system
    5. Customize production

    FAQ
    Q1: Can you make OEM/ODM order?
    Yes, we have rich experience on OEM/ODM order.

    Q2: Delivery
    Sample can be afforded within 5-7days and volume order can be finished within 15-20days.

    Q3: About sample?
    Available.

    Q4: Which of payments you support?
    T/T, L/C,PAYPAL, CREDIT CARD.

     

    Calculating the Deflection of a Worm Shaft

    In this article, we’ll discuss how to calculate the deflection of a worm gear’s worm shaft. We’ll also discuss the characteristics of a worm gear, including its tooth forces. And we’ll cover the important characteristics of a worm gear. Read on to learn more! Here are some things to consider before purchasing a worm gear. We hope you enjoy learning! After reading this article, you’ll be well-equipped to choose a worm gear to match your needs.
    worm shaft

    Calculation of worm shaft deflection

    The main goal of the calculations is to determine the deflection of a worm. Worms are used to turn gears and mechanical devices. This type of transmission uses a worm. The worm diameter and the number of teeth are inputted into the calculation gradually. Then, a table with proper solutions is shown on the screen. After completing the table, you can then move on to the main calculation. You can change the strength parameters as well.
    The maximum worm shaft deflection is calculated using the finite element method (FEM). The model has many parameters, including the size of the elements and boundary conditions. The results from these simulations are compared to the corresponding analytical values to calculate the maximum deflection. The result is a table that displays the maximum worm shaft deflection. The tables can be downloaded below. You can also find more information about the different deflection formulas and their applications.
    The calculation method used by DIN EN 10084 is based on the hardened cemented worm of 16MnCr5. Then, you can use DIN EN 10084 (CuSn12Ni2-C-GZ) and DIN EN 1982 (CuAl10Fe5Ne5-C-GZ). Then, you can enter the worm face width, either manually or using the auto-suggest option.
    Common methods for the calculation of worm shaft deflection provide a good approximation of deflection but do not account for geometric modifications on the worm. While Norgauer’s 2021 approach addresses these issues, it fails to account for the helical winding of the worm teeth and overestimates the stiffening effect of gearing. More sophisticated approaches are required for the efficient design of thin worm shafts.
    Worm gears have a low noise and vibration compared to other types of mechanical devices. However, worm gears are often limited by the amount of wear that occurs on the softer worm wheel. Worm shaft deflection is a significant influencing factor for noise and wear. The calculation method for worm gear deflection is available in ISO/TR 14521, DIN 3996, and AGMA 6022.
    The worm gear can be designed with a precise transmission ratio. The calculation involves dividing the transmission ratio between more stages in a gearbox. Power transmission input parameters affect the gearing properties, as well as the material of the worm/gear. To achieve a better efficiency, the worm/gear material should match the conditions that are to be experienced. The worm gear can be a self-locking transmission.
    The worm gearbox contains several machine elements. The main contributors to the total power loss are the axial loads and bearing losses on the worm shaft. Hence, different bearing configurations are studied. One type includes locating/non-locating bearing arrangements. The other is tapered roller bearings. The worm gear drives are considered when locating versus non-locating bearings. The analysis of worm gear drives is also an investigation of the X-arrangement and four-point contact bearings.
    worm shaft

    Influence of tooth forces on bending stiffness of a worm gear

    The bending stiffness of a worm gear is dependent on tooth forces. Tooth forces increase as the power density increases, but this also leads to increased worm shaft deflection. The resulting deflection can affect efficiency, wear load capacity, and NVH behavior. Continuous improvements in bronze materials, lubricants, and manufacturing quality have enabled worm gear manufacturers to produce increasingly high power densities.
    Standardized calculation methods take into account the supporting effect of the toothing on the worm shaft. However, overhung worm gears are not included in the calculation. In addition, the toothing area is not taken into account unless the shaft is designed next to the worm gear. Similarly, the root diameter is treated as the equivalent bending diameter, but this ignores the supporting effect of the worm toothing.
    A generalized formula is provided to estimate the STE contribution to vibratory excitation. The results are applicable to any gear with a meshing pattern. It is recommended that engineers test different meshing methods to obtain more accurate results. One way to test tooth-meshing surfaces is to use a finite element stress and mesh subprogram. This software will measure tooth-bending stresses under dynamic loads.
    The effect of tooth-brushing and lubricant on bending stiffness can be achieved by increasing the pressure angle of the worm pair. This can reduce tooth bending stresses in the worm gear. A further method is to add a load-loaded tooth-contact analysis (CCTA). This is also used to analyze mismatched ZC1 worm drive. The results obtained with the technique have been widely applied to various types of gearing.
    In this study, we found that the ring gear’s bending stiffness is highly influenced by the teeth. The chamfered root of the ring gear is larger than the slot width. Thus, the ring gear’s bending stiffness varies with its tooth width, which increases with the ring wall thickness. Furthermore, a variation in the ring wall thickness of the worm gear causes a greater deviation from the design specification.
    To understand the impact of the teeth on the bending stiffness of a worm gear, it is important to know the root shape. Involute teeth are susceptible to bending stress and can break under extreme conditions. A tooth-breakage analysis can control this by determining the root shape and the bending stiffness. The optimization of the root shape directly on the final gear minimizes the bending stress in the involute teeth.
    The influence of tooth forces on the bending stiffness of a worm gear was investigated using the CZPT Spiral Bevel Gear Test Facility. In this study, multiple teeth of a spiral bevel pinion were instrumented with strain gages and tested at speeds ranging from static to 14400 RPM. The tests were performed with power levels as high as 540 kW. The results obtained were compared with the analysis of a three-dimensional finite element model.
    worm shaft

    Characteristics of worm gears

    Worm gears are unique types of gears. They feature a variety of characteristics and applications. This article will examine the characteristics and benefits of worm gears. Then, we’ll examine the common applications of worm gears. Let’s take a look! Before we dive in to worm gears, let’s review their capabilities. Hopefully, you’ll see how versatile these gears are.
    A worm gear can achieve massive reduction ratios with little effort. By adding circumference to the wheel, the worm can greatly increase its torque and decrease its speed. Conventional gearsets require multiple reductions to achieve the same reduction ratio. Worm gears have fewer moving parts, so there are fewer places for failure. However, they can’t reverse the direction of power. This is because the friction between the worm and wheel makes it impossible to move the worm backwards.
    Worm gears are widely used in elevators, hoists, and lifts. They are particularly useful in applications where stopping speed is critical. They can be incorporated with smaller brakes to ensure safety, but shouldn’t be relied upon as a primary braking system. Generally, they are self-locking, so they are a good choice for many applications. They also have many benefits, including increased efficiency and safety.
    Worm gears are designed to achieve a specific reduction ratio. They are typically arranged between the input and output shafts of a motor and a load. The 2 shafts are often positioned at an angle that ensures proper alignment. Worm gear gears have a center spacing of a frame size. The center spacing of the gear and worm shaft determines the axial pitch. For instance, if the gearsets are set at a radial distance, a smaller outer diameter is necessary.
    Worm gears’ sliding contact reduces efficiency. But it also ensures quiet operation. The sliding action limits the efficiency of worm gears to 30% to 50%. A few techniques are introduced herein to minimize friction and to produce good entrance and exit gaps. You’ll soon see why they’re such a versatile choice for your needs! So, if you’re considering purchasing a worm gear, make sure you read this article to learn more about its characteristics!
    An embodiment of a worm gear is described in FIGS. 19 and 20. An alternate embodiment of the system uses a single motor and a single worm 153. The worm 153 turns a gear which drives an arm 152. The arm 152, in turn, moves the lens/mirr assembly 10 by varying the elevation angle. The motor control unit 114 then tracks the elevation angle of the lens/mirr assembly 10 in relation to the reference position.
    The worm wheel and worm are both made of metal. However, the brass worm and wheel are made of brass, which is a yellow metal. Their lubricant selections are more flexible, but they’re limited by additive restrictions due to their yellow metal. Plastic on metal worm gears are generally found in light load applications. The lubricant used depends on the type of plastic, as many types of plastics react to hydrocarbons found in regular lubricant. For this reason, you need a non-reactive lubricant.

    China Custom 104mm Brushless DC Motorcycle 36V Electric Motor High Torque Direct Drive Motor   with Free Design CustomChina Custom 104mm Brushless DC Motorcycle 36V Electric Motor High Torque Direct Drive Motor   with Free Design Custom

    China Standard Factory Supply Integrate Frame 28 Inch E Bike CZPT Rear Drive Motor City Road Ebike Electric Electrical Electronic Rickshaw Dirt Ebikes wholesaler

    Product Description

    Product Description

    Electric System
    Motor 250w – 750w rear drive hub motor
    Battery  Samsung, 8.8Ah – 17.5Ah lithium battery
    Controller 14-18A Integrated  controller
    Display LED / LCD display
    Charger 110-240v AC 50-60HZ, 2A  CE / UL Applied
    PAS Speed / Torque sensor
    Throttle Thumb / twist throttle

    Main Components
    Frame 6161 Aluminum Alloy, 20-29 inch
    Front Fork Aluminum alloy suspension fork, adjustable with lock.
    Rims Double wall, aluminum alloy, 36H*13G
    Tires HangZhou / CZPT / Kenda tire
    Brake Front&Rear disc brake
    Speed Gears Shimano 7 speed
    Light Front LED light with horn
    Rear Derailleur Shimano 7 speed
    Saddle Comfortable Saddle
    Pedal Foldable pedal
    Stem Aluminum alloy
    Brake Levers HangZhoung brake levels, with cut-off function
    Crankset Aluminum, 42T – 52T
    Fenders Full covered,Alloy / steel / plastic fenders
    Rear Rack Rear alloy carrier optional

    Performance
    Max Speed 42-45km/h
    Travel Distance 30km by Throttle, 40-60km by PAS
    Loading Capacity 120kg
    Charging Time & Life 4-6 Hours, >900 Cycles
    N.W./G.W. 28KG/32KG
    Carton size 160X26X80CM
    Container Loading 80pcs/20ft;  190pcs/40HQ                            

    Features

    1.500W hub motor(Marked as 250w) with water proof connector

    2.Disc brake for both
    3.48V 13A Lithium Battery(Samsung cells)
    4.LCD display
    5.LED Light for Front&Rear battery light
    6.PAS& Throttle

     

     

     

     

     

    Soft and comfortable saddle
    Rear carrier max loading is 150kgs

    LED front light with higher brightness

    Make a safer cycling
    Hidden battery more convenient to charging

    1. Warranty policy
     
    a.)     For main electronic parts, charger, controller and battery, we provide 6 months warranty.
    b.)     For motor, we provide 12 months warranty.
    c.)     For frame, handlebar, stem and wheel rim we provide 2 years warranty.
     
     1.1 The following conditions, not including in warranty policy
    a.)     Any damages caused by human factor.
    b.)     Dismounting any parts without professional technical people.
    c.)     Use other parts in our electric bike or scooter.
    d.)     Damages caused by traffic accident and other accident.
    e.)     The problem caused by overloading.
     
     2. Technical support
     
    a.)     We provide “electric circuit diagram” for each model.
    b.)     We can train customer’s 1 or 2 technical workers for free.
    c.)     When oversea customers meet serious problem, they can not work out by technican, we will dispatch engineer to customer’s company to give help.
     
    FAQ
     
     1.  Can I order sample?
     Answer: Yes, we accept sample for trial order?
     
    2.  How long for delivery time?
     Answer: For sample order, our delivery time is 20 to 30days; for 1 full container, it’s 25 to 45days.
     
    3.  Which colores will be available?
     Answer: Normally, we will introduce the most popular colores to customers. At the same time, we are CZPT to make colores according to customer’s demands.
     
    4.  Can I use my logo(sticker) on the electric bike?
     Answer: Yes, we can make customer’s logo(sticker) on the electric bike for 1 full container order.
     
    5.  How to delivery to foreign buyer?
     Answer: For sample order, the customer can select by sea or by air.  For full container order, by sea is the  best choice.
     
    6.  Need I assemble parts of the electric bike when we get them?
     Answer: Yes, we will take out few parts, like pedals(if have), mirrors(if have), front wheel, front fender, and  rear trunk(if have) before package. Our workers will put these parts in electric bike cartons. And will send 1 professional tool bag to help you assemble. It’s easy to make it.
     
    7. Can I mix different models in 1 full container order?
     Answer: Yes, we accept different models in 1 full container.
     
    8.  Need I buy spare parts for first order?
     Answer: Yes, you need to buy some spare parts for future service. The quantity depends on your electric  bike order. We will give you advice when you need.
     

    Our service
    1. OEM Manufacturing welcome: Product, Package…
    2. Sample order
    3. We will reply you for your inquiry in 24 hours.
    4. After sending, we will track the products for you once every 2 days, until you get the products. When you got the goods, test them, and give me a feedback.If you have any questions about the problem, contact with us, we will offer the solve way for you.

    Certifications

    Company Profile

    Packaging & Shipping

    FAQ

    What Are Screw Shaft Threads?

    A screw shaft is a threaded part used to fasten other components. The threads on a screw shaft are often described by their Coefficient of Friction, which describes how much friction is present between the mating surfaces. This article discusses these characteristics as well as the Material and Helix angle. You’ll have a better understanding of your screw shaft’s threads after reading this article. Here are some examples. Once you understand these details, you’ll be able to select the best screw nut for your needs.
    screwshaft

    Coefficient of friction between the mating surfaces of a nut and a screw shaft

    There are 2 types of friction coefficients. Dynamic friction and static friction. The latter refers to the amount of friction a nut has to resist an opposing motion. In addition to the material strength, a higher coefficient of friction can cause stick-slip. This can lead to intermittent running behavior and loud squeaking. Stick-slip may lead to a malfunctioning plain bearing. Rough shafts can be used to improve this condition.
    The 2 types of friction coefficients are related to the applied force. When applying force, the applied force must equal the nut’s pitch diameter. When the screw shaft is tightened, the force may be removed. In the case of a loosening clamp, the applied force is smaller than the bolt’s pitch diameter. Therefore, the higher the property class of the bolt, the lower the coefficient of friction.
    In most cases, the screwface coefficient of friction is lower than the nut face. This is because of zinc plating on the joint surface. Moreover, power screws are commonly used in the aerospace industry. Whether or not they are power screws, they are typically made of carbon steel, alloy steel, or stainless steel. They are often used in conjunction with bronze or plastic nuts, which are preferred in higher-duty applications. These screws often require no holding brakes and are extremely easy to use in many applications.
    The coefficient of friction between the mating surfaces of t-screws is highly dependent on the material of the screw and the nut. For example, screws with internal lubricated plastic nuts use bearing-grade bronze nuts. These nuts are usually used on carbon steel screws, but can be used with stainless steel screws. In addition to this, they are easy to clean.

    Helix angle

    In most applications, the helix angle of a screw shaft is an important factor for torque calculation. There are 2 types of helix angle: right and left hand. The right hand screw is usually smaller than the left hand one. The left hand screw is larger than the right hand screw. However, there are some exceptions to the rule. A left hand screw may have a greater helix angle than a right hand screw.
    A screw’s helix angle is the angle formed by the helix and the axial line. Although the helix angle is not usually changed, it can have a significant effect on the processing of the screw and the amount of material conveyed. These changes are more common in 2 stage and special mixing screws, and metering screws. These measurements are crucial for determining the helix angle. In most cases, the lead angle is the correct angle when the screw shaft has the right helix angle.
    High helix screws have large leads, sometimes up to 6 times the screw diameter. These screws reduce the screw diameter, mass, and inertia, allowing for higher speed and precision. High helix screws are also low-rotation, so they minimize vibrations and audible noises. But the right helix angle is important in any application. You must carefully choose the right type of screw for the job at hand.
    If you choose a screw gear that has a helix angle other than parallel, you should select a thrust bearing with a correspondingly large center distance. In the case of a screw gear, a 45-degree helix angle is most common. A helix angle greater than zero degrees is also acceptable. Mixing up helix angles is beneficial because it allows for a variety of center distances and unique applications.
    screwshaft

    Thread angle

    The thread angle of a screw shaft is measured from the base of the head of the screw to the top of the screw’s thread. In America, the standard screw thread angle is 60 degrees. The standard thread angle was not widely adopted until the early twentieth century. A committee was established by the Franklin Institute in 1864 to study screw threads. The committee recommended the Sellers thread, which was modified into the United States Standard Thread. The standardized thread was adopted by the United States Navy in 1868 and was recommended for construction by the Master Car Builders’ Association in 1871.
    Generally speaking, the major diameter of a screw’s threads is the outside diameter. The major diameter of a nut is not directly measured, but can be determined with go/no-go gauges. It is necessary to understand the major and minor diameters in relation to each other in order to determine a screw’s thread angle. Once this is known, the next step is to determine how much of a pitch is necessary to ensure a screw’s proper function.
    Helix angle and thread angle are 2 different types of angles that affect screw efficiency. For a lead screw, the helix angle is the angle between the helix of the thread and the line perpendicular to the axis of rotation. A lead screw has a greater helix angle than a helical one, but has higher frictional losses. A high-quality lead screw requires a higher torque to rotate. Thread angle and lead angle are complementary angles, but each screw has its own specific advantages.
    Screw pitch and TPI have little to do with tolerances, craftsmanship, quality, or cost, but rather the size of a screw’s thread relative to its diameter. Compared to a standard screw, the fine and coarse threads are easier to tighten. The coarser thread is deeper, which results in lower torques. If a screw fails because of torsional shear, it is likely to be a result of a small minor diameter.

    Material

    Screws have a variety of different sizes, shapes, and materials. They are typically machined on CNC machines and lathes. Each type is used for different purposes. The size and material of a screw shaft are influenced by how it will be used. The following sections give an overview of the main types of screw shafts. Each 1 is designed to perform a specific function. If you have questions about a specific type, contact your local machine shop.
    Lead screws are cheaper than ball screws and are used in light-duty, intermittent applications. Lead screws, however, have poor efficiency and are not recommended for continuous power transmission. But, they are effective in vertical applications and are more compact. Lead screws are typically used as a kinematic pair with a ball screw. Some types of lead screws also have self-locking properties. Because they have a low coefficient of friction, they have a compact design and very few parts.
    Screws are made of a variety of metals and alloys. Steel is an economical and durable material, but there are also alloy steel and stainless steel types. Bronze nuts are the most common and are often used in higher-duty applications. Plastic nuts provide low-friction, which helps reduce the drive torques. Stainless steel screws are also used in high-performance applications, and may be made of titanium. The materials used to create screw shafts vary, but they all have their specific functions.
    Screws are used in a wide range of applications, from industrial and consumer products to transportation equipment. They are used in many different industries, and the materials they’re made of can determine their life. The life of a screw depends on the load that it bears, the design of its internal structure, lubrication, and machining processes. When choosing screw assemblies, look for a screw made from the highest quality steels possible. Usually, the materials are very clean, so they’re a great choice for a screw. However, the presence of imperfections may cause a normal fatigue failure.
    screwshaft

    Self-locking features

    Screws are known to be self-locking by nature. The mechanism for this feature is based on several factors, such as the pitch angle of the threads, material pairing, lubrication, and heating. This feature is only possible if the shaft is subjected to conditions that are not likely to cause the threads to loosen on their own. The self-locking ability of a screw depends on several factors, including the pitch angle of the thread flank and the coefficient of sliding friction between the 2 materials.
    One of the most common uses of screws is in a screw top container lid, corkscrew, threaded pipe joint, vise, C-clamp, and screw jack. Other applications of screw shafts include transferring power, but these are often intermittent and low-power operations. Screws are also used to move material in Archimedes’ screw, auger earth drill, screw conveyor, and micrometer.
    A common self-locking feature for a screw is the presence of a lead screw. A screw with a low PV value is safe to operate, but a screw with high PV will need a lower rotation speed. Another example is a self-locking screw that does not require lubrication. The PV value is also dependent on the material of the screw’s construction, as well as its lubrication conditions. Finally, a screw’s end fixity – the way the screw is supported – affects the performance and efficiency of a screw.
    Lead screws are less expensive and easier to manufacture. They are a good choice for light-weight and intermittent applications. These screws also have self-locking capabilities. They can be self-tightened and require less torque for driving than other types. The advantage of lead screws is their small size and minimal number of parts. They are highly efficient in vertical and intermittent applications. They are not as accurate as lead screws and often have backlash, which is caused by insufficient threads.

    China Standard Factory Supply Integrate Frame 28 Inch E Bike CZPT Rear Drive Motor City Road Ebike Electric Electrical Electronic Rickshaw Dirt Ebikes   wholesaler China Standard Factory Supply Integrate Frame 28 Inch E Bike CZPT Rear Drive Motor City Road Ebike Electric Electrical Electronic Rickshaw Dirt Ebikes   wholesaler

    China Best Sales BBS01 36V 250W 350W CZPT 8fun BBS02 48V 500W 750W MID Drive Motor Electric Bike Conversion Kit with Best Sales

    Product Description

    Product Description

    bafang 8fun bbs01 250w 350w bbs02 500w 750w central motor kit

    With an integrated speed sensor, this mid-drive motor which is compatible with a 68/100/110/120mm bottom bracket has a rated power of 250w,350w,500w and 750w. a reduction ratio of 1:21.9 and a maximum torque of 160N.m, will provide the rider with great explosive force when starting the system. Hightly strong and efficient, this motor greatly enhances riding joy and is suitable for mountain bikes and sand bikes, which are the favorites of riders who love challenges as well as transport bikes. 

    Buyers Show

     

    Product Parameters

    Motor Power 36V 250W 350W 48v 500W 750W mid motor 
    Wheel diameter optional 
    Max Torque  80 N.M
    Efficiency >= 80
    Pedal sensor  Speed sensor 
    Color Black
    Operating Temperature -20 degree to 45 degree 
    Mangnet poles 8
    Ip (waterproof) IP65
    Bottom Bracket 68mm /100mm/110mm/120mm for choosing
    Controller inside the motor 
    Certification CE / EN 14764 / ROHS

     

    Detailed Photos

     

    Packing List

    1.bafang bbshd mid crank motor(controller inside)      
    2.C965 LCD display or DPC-14 /DPC-18 colour display for choosing
    3.chain wheel
    4.crank            
    5.speed sensor and magnet  
    6.brake lever 
    7.thumb throttle   
    8. Nuts  

    1.Packing:
    Standard export carton packing, with professional foam protection. 
    2.Shipping:
    For samples, we deliver goods to customer by UPS,FEDEX,DHL,TNT or EMS.
    For mass production order, we deliver goods to customer by air or by sea.

     

    Related Products

    Bafang G510 mid drive motor BBSHD mid drive motor

    36V 11.6ah Frear Racktype Battery 

     

    Company Profile

    CNEBIKES Co., Ltd is located in HangZhou city ,ZheJiang ,China.  We are just 1 hour from ZheJiang by high-speed train . It is easy for potential customers to come and have a look at our facility and products. We manufacture a variety of products . Our products are reliable and durable. We export to Europe, the USA, Canada, Southeast Asia, Australia and many other countries . Our customers have given us high praise for our products and service. 
     

    Warranty terms

    motor—>2 years(guarantee replacement in first year, guarantee repair in the next year.)
    battery—->1years(guarantee replacement.),
    other parts—->half an year 

     

     

    The Functions of Splined Shaft Bearings

    Splined shafts are the most common types of bearings for machine tools. They are made of a wide variety of materials, including metals and non-metals such as Delrin and nylon. They are often fabricated to reduce deflection. The tooth profile will become deformed with time, as the shaft is used over a long period of time. Splined shafts are available in a huge range of materials and lengths.

    Functions

    Splined shafts are used in a variety of applications and industries. They are an effective anti-rotational device, as well as a reliable means of transmitting torque. Other types of shafts are available, including key shafts, but splines are the most convenient for transmitting torque. The following article discusses the functions of splines and why they are a superior choice. Listed below are a few examples of applications and industries in which splines are used.
    Splined shafts can be of several styles, depending on the application and mechanical system in question. The differences between splined shaft styles include the design of teeth, overall strength, transfer of rotational concentricity, sliding ability, and misalignment tolerance. Listed below are a few examples of splines, as well as some of their benefits. The difference between these styles is not mutually exclusive; instead, each style has a distinct set of pros and cons.
    A splined shaft is a cylindrical shaft with teeth or ridges that correspond to a specific angular position. This allows a shaft to transfer torque while maintaining angular correspondence between tracks. A splined shaft is defined as a cylindrical member with several grooves cut into its circumference. These grooves are equally spaced around the shaft and form a series of projecting keys. These features give the shaft a rounded appearance and allow it to fit perfectly into a grooved cylindrical member.
    While the most common applications of splines are for shortening or extending shafts, they can also be used to secure mechanical assemblies. An “involute spline” spline has a groove that is wider than its counterparts. The result is that a splined shaft will resist separation during operation. They are an ideal choice for applications where deflection is an issue.
    A spline shaft’s radial torsion load distribution is equally distributed, unless a bevel gear is used. The radial torsion load is evenly distributed and will not exert significant load concentration. If the spline couplings are not aligned correctly, the spline connection can fail quickly, causing significant fretting fatigue and wear. A couple of papers discuss this issue in more detail.
    splineshaft

    Types

    There are many different types of splined shafts. Each type features an evenly spaced helix of grooves on its outer surface. These grooves are either parallel or involute. Their shape allows them to be paired with gears and interchange rotary and linear motion. Splines are often cold-rolled or cut. The latter has increased strength compared to cut spines. These types of shafts are commonly used in applications requiring high strength, accuracy, and smoothness.
    Another difference between internal and external splined shafts lies in the manufacturing process. The former is made of wood, while the latter is made of steel or a metal alloy. The process of manufacturing splined shafts involves cutting furrows into the surface of the material. Both processes are expensive and require expert skill. The main advantage of splined shafts is their adaptability to a wide range of applications.
    In general, splined shafts are used in machinery where the rotation is transferred to an internal splined member. This member can be a gear or some other rotary device. These types of shafts are often packaged together as a hub assembly. Cleaning and lubricating are essential to the life of these components. If you’re using them on a daily basis, you’ll want to make sure to regularly inspect them.
    Crowned splines are usually involute. The teeth of these splines form a spiral pattern. They are used for smaller diameter shafts because they add strength. Involute splines are also used on instrument drives and valve shafts. Serration standards are found in the SAE. Both kinds of splines can also contain a ball bearing for high torque. The difference between the 2 types of splines is the number of teeth on the shaft.
    Internal splines have many advantages over external ones. For example, an internal spline shaft can be made using a grinding wheel instead of a CNC machine. It also uses a more accurate and economical process. Furthermore, it allows for a shorter manufacturing cycle, which is essential when splining high-speed machines. In addition, it stabilizes the relative phase between the spline and thread.
    splineshaft

    Manufacturing methods

    There are several methods used to fabricate a splined shaft. Key and splined shafts are constructed from 2 separate parts that are shaped in a synchronized manner to transfer torque uniformly. Hot rolling is 1 method, while cold rolling utilizes low temperatures to form metal. Both methods enhance mechanical properties, surface finishes, and precision. The advantage of cold rolling is its cost-effectiveness.
    Cold forming is 1 method, as well as machining and assembling. Cold forming is a unique process that allows the spline to be shaped to the desired shape. The resulting shape provides maximum contact area and torsional strength. Standard splines are available in standard sizes, but custom lengths can also be ordered. CZPT offers various auxiliary equipment, such as mating sleeves and flanged bushings.
    Cold forging is another method. This method produces long splined shafts that are used in automobile propellers. After the spline portion is cut out, it is worked on in a hobbing machine. Work hardening enhances the root strength of the splined portion. It can be used for bearings, gears, and other mechanical components. Listed below are the manufacturing methods for splined shafts.
    Parallel splines are the simplest of the splined shaft manufacturing methods. Parallel splines are usually welded to shafts, while involute splines are made of metal or non-metals. Splines are available in a wide variety of lengths and materials. The process is usually accompanied by a process called milling. The workpiece rotates to produce the serrated surface.
    Splines are internal or external grooves in a splined shaft. They work in combination with keyways to transfer torque. Male and female splines are used in gears. Female and male splines correspond to 1 another to ensure proper angular correspondence. Involute splines have more surface area and thus are stronger than external splines. Moreover, they help the shaft fit into a grooved cylindrical member without misalignment.
    A variety of other methods of manufacturing a splined shaft can be used to produce a splined shaft. Spline shafts can be produced using broaching and shaping, 2 precision machining methods. Broaching uses a metal tool with successively larger teeth to remove metal and create ridges and holes in the surface of a material. However, this process is expensive and requires special expertise.
    splineshaft

    Applications

    The splined shaft is a mechanical component with a helix-like shape formed by the equal spacing of grooves in a circular ring. The splines can either have parallel or involute sides. The splines minimize stress concentration in stationary joints and can be used in both rotary and linear motion. In some cases, splines are rolled rather than cut. The latter is more durable than cut splines and is often used in applications requiring high strength, accuracy, and smooth finish.
    Splined shafts are commonly made of carbon steel. This alloy steel has a low carbon content, making it easy to work with. Carbon steel is a great choice for splines because it is malleable. Generally, high-quality carbon steel provides a consistent motion. Steel alloys are also available that contain nickel, chromium, copper, and other metals. If you’re unsure of the right material for your application, you can consult a spline chart.
    Splines are a versatile mechanical component. They are easy to cut and fit. Splines can be internal or external, with teeth positioned at equal intervals on both sides of the shaft. This allows the shaft to engage with the hub around the entire circumference of the hub. It also increases load capacity by creating a constant multiple-tooth point of contact with the hub. For this reason, they’re used extensively in rotary and linear motion.
    Splined shafts are used in a wide variety of industries. CZPT Inc. offers custom and standard splined shafts for a variety of applications. When choosing a splined shaft for a specific application, consider the surrounding mated components, torque requirements, and size requirements. These 3 factors will make it the ideal choice for your rotary equipment. And you’ll be pleased with the end result!
    There are many types of splines and their applications are endless. They transfer torque and angular misalignment between parts, and they also enable the axial rotation of assembled components. Therefore, splines are an essential component of machinery and are used in a wide range of applications. This type of shaft can be found in various types of machines, from household appliances to industrial machinery. So, the next time you’re looking for a splined shaft, make sure you look for a splined one.

    China Best Sales BBS01 36V 250W 350W CZPT 8fun BBS02 48V 500W 750W MID Drive Motor Electric Bike Conversion Kit   with Best SalesChina Best Sales BBS01 36V 250W 350W CZPT 8fun BBS02 48V 500W 750W MID Drive Motor Electric Bike Conversion Kit   with Best Sales

    China OEM 2022 Vehicles VW ID4 Crozz Fast Electric Car SUV 5 Seats Electric Car SUV Used Left Hand Drive Electrical Car Automobile E Auto ID4 Electric Vehicle Motor Car near me factory

    Product Description

    ID.4 CROZZ PURE+
    Car Body SIZE 4592*1852*1629mm
    Wheelbase 2765mm
    Minimum distance to ground
    Body structure SUV
    Full load mass (kg)
    seats 5
    Electromotor Motor type permanent magnet/synchronous
    Maximum motor power 150kw
    Maximum torque of motor 310 N.m
    battery type Ternary lithium ion battery
    battery capacity 84.8kwh
    Max cruising range 550km
    Max.speed 160km/h
    Battery pack warranty 3 years/100000kms
    fast charge 0.5 hour from 0%-80%
    speed changing box The number of gear 1
    Gear shift type Single-speed transmission for electric vehicles
    Chassis steering Drive Mode RWD
    Front Suspended system: McPherson independent suspension
    Rear Suspended system: Multi-link independent suspension
    Power type 100% Electric
    car body structure Load-bearing car body structure
    The wheel brake Brake type ventilated disc
    Parking brake type Electronic parking
    tyre size 235/55R19 255/50R19
    Spare tire specifications Non-Full-Size
    safety equipment Airbags driver/copilot
    The seat belt is not fastened Front seats
    ISOFIX
    EBD/CBC
    configuration
    remote key Keyless access function Central color LCD screen
    LED panel 12″ Keyless startup system The headlights are off late
    USB Imitation leather seats Steering Wheel Adjustment
    AUX All power window Color driving computer screen
    SD 4 pcs USB(2 front/2 rear) Front and rear seat adjustment
    AC aluminum alloy wheel Window anti – pinch function
    Car central lock braking energy recovery The back seat is proportionally reclined
    7 pcs trumpets cosmetic mirror The headlight height is adjustable
    halogen lamp Backseat outlet One-button lift function of window
    Front center rail Backrest adjustment Electrically adjust the rearview mirror

    Product Description

    2571 Vehicles VW ID4 CROZZ Fast Electric Car SUV 5 Seats Electric Car SUV Used Left Hand Drive Electrical car Automobile E Auto ID4 Electric Vehicle Motor car

    Company Profile

    Who we are?

    UNILAND MOTORS, located in HangZhou of China, is a professional company specialized in electric cars exporting. Based on over 10 years’ EV exporting experience, our models now cover such types as Sedan, SUV, Commercial Van and so on. What’s more, rich stocks and stable supply chain have enabled us realize monthly at least 200 units delivery. With the rare export qualification certified by the Ministry of Commerce in China, as well as the agent of several big electric vehicle brands, we are more professional to supply customers with various EV models and high-quality after-sales service in all aspects.

    What we could supply?

    Till now, UNILAND has built stable cooperation with top EV brands by virtue of the wide sales network,specially authorized by some famous brands as distributors for global trading. We could provide you all the ev brands.

    Why choose Uniland?

    1) Competitive price. UNILAND has established close cooperation with some EV brand manufacturers and usually take cars with the quantity of several hundreds, so we can give customers very good price.

    2) Stable supply chain. Establish close cooperation with EV factories and book VW production lines to assemble cars exclusively for UNILAND to guarantee rich available cars.  

    3) Continuous fast delivery. With stable supply chain, we book vessels from shipping company directly, so that we can get the best freight and promise our customers best delivery time.

    4) Complete after-sales service. We have professional after-sales service team, dealing with any problems faced from customers and helping customers buy spare parts for EVs in shortest time. Their quick response helps win good reputation for UNILAND.

    Warehouse show

     

     

    EV Loading & Delivery

     

    Arrive at port & vessel

     

    Customer’s feedback

     

    FAQ

    1. Which brand electric car could you supply?
        All electric car brands could be supplied.

    2. What kind of payment terms can be acceptable?
        We’re flexible for payment terms, 30% T/T deposit and 70% T/T balance before shipment.

    3. What’s your minimum Order quantity?
        1 unit, unsually big discount based on large quantity.

    4. What’s your supportive policy for distributors in overseas market?
        We support in many aspects, including marketing, promotion, product development & improvements, service training, advertising etc.

    5. What is your shipping type and delivery time?
        By train or by sea. Normally delivery time 15-25days after receiving your deposit.

     

    Screws and Screw Shafts

    A screw is a mechanical device that holds objects together. Screws are usually forged or machined. They are also used in screw jacks and press-fitted vises. Their self-locking properties make them a popular choice in many different industries. Here are some of the benefits of screws and how they work. Also read about their self-locking properties. The following information will help you choose the right screw for your application.

    Machined screw shaft

    A machined screw shaft can be made of various materials, depending on the application. Screw shafts can be made from stainless steel, brass, bronze, titanium, or iron. Most manufacturers use high-precision CNC machines or lathes to manufacture these products. These products come in many sizes and shapes, and they have varying applications. Different materials are used for different sizes and shapes. Here are some examples of what you can use these screws for:
    Screws are widely used in many applications. One of the most common uses is in holding objects together. This type of fastener is used in screw jacks, vises, and screw presses. The thread pitch of a screw can vary. Generally, a smaller pitch results in greater mechanical advantage. Hence, a machined screw shaft should be sized appropriately. This ensures that your product will last for a long time.
    A machined screw shaft should be compatible with various threading systems. In general, the ASME system is used for threaded parts. The threaded hole occupies most of the shaft. The thread of the bolt occupy either part of the shaft, or the entire one. There are also alternatives to bolts, including riveting, rolling pins, and pinned shafts. These alternatives are not widely used today, but they are useful for certain niche applications.
    If you are using a ball screw, you can choose to anneal the screw shaft. To anneal the screw shaft, use a water-soaked rag as a heat barrier. You can choose from 2 different options, depending on your application. One option is to cover the screw shaft with a dust-proof enclosure. Alternatively, you can install a protective heat barrier over the screw shaft. You can also choose to cover the screw shaft with a dust-proof machine.
    If you need a smaller size, you can choose a smaller screw. It may be smaller than a quarter of an inch, but it may still be compatible with another part. The smaller ones, however, will often have a corresponding mating part. These parts are typically denominated by their ANSI numerical size designation, which does not indicate threads-per-inch. There is an industry standard for screw sizes that is a little easier to understand.
    screwshaft

    Ball screw nut

    When choosing a Ball screw nut for a screw shaft, it is important to consider the critical speed of the machine. This value excites the natural frequency of a screw and determines how fast it can be turned. In other words, it varies with the screw diameter and unsupported length. It also depends on the screw shaft’s diameter and end fixity. Depending on the application, the nut can be run at a maximum speed of about 80% of its theoretical critical speed.
    The inner return of a ball nut is a cross-over deflector that forces the balls to climb over the crest of the screw. In 1 revolution of the screw, a ball will cross over the nut crest to return to the screw. Similarly, the outer circuit is a circular shape. Both flanges have 1 contact point on the ball shaft, and the nut is connected to the screw shaft by a screw.
    The accuracy of ball screws depends on several factors, including the manufacturing precision of the ball grooves, the compactness of the assembly, and the set-up precision of the nut. Depending on the application, the lead accuracy of a ball screw nut may vary significantly. To improve lead accuracy, preloading, and lubrication are important. Ewellix ball screw assembly specialists can help you determine the best option for your application.
    A ball screw nut should be preloaded prior to installation in order to achieve the expected service life. The smallest amount of preload required can reduce a ball screw’s calculated life by as much as 90 percent. Using a lubricant of a standard grade is recommended. Some lubricants contain additives. Using grease or oil in place of oil can prolong the life of the screw.
    A ball screw nut is a type of threaded nut that is used in a number of different applications. It works similar to a ball bearing in that it contains hardened steel balls that move along a series of inclined races. When choosing a ball screw nut, engineers should consider the following factors: speed, life span, mounting, and lubrication. In addition, there are other considerations, such as the environment in which the screw is used.
    screwshaft

    Self-locking property of screw shaft

    A self-locking screw is 1 that is capable of rotating without the use of a lock washer or bolt. This property is dependent on a number of factors, but 1 of them is the pitch angle of the thread. A screw with a small pitch angle is less likely to self-lock, while a large pitch angle is more likely to spontaneously rotate. The limiting angle of a self-locking thread can be calculated by calculating the torque Mkdw at which the screw is first released.
    The pitch angle of the screw’s threads and its coefficient of friction determine the self-locking function of the screw. Other factors that affect its self-locking function include environmental conditions, high or low temperature, and vibration. Self-locking screws are often used in single-line applications and are limited by the size of their pitch. Therefore, the self-locking property of the screw shaft depends on the specific application.
    The self-locking feature of a screw is an important factor. If a screw is not in a state of motion, it can be a dangerous or unusable machine. The self-locking property of a screw is critical in many applications, from corkscrews to threaded pipe joints. Screws are also used as power linkages, although their use is rarely necessary for high-power operations. In the archimedes’ screw, for example, the blades of the screw rotate around an axis. A screw conveyor uses a rotating helical chamber to move materials. A micrometer uses a precision-calibrated screw to measure length.
    Self-locking screws are commonly used in lead screw technology. Their pitch and coefficient of friction are important factors in determining the self-locking property of screws. This property is advantageous in many applications because it eliminates the need for a costly brake. Its self-locking property means that the screw will be secure without requiring a special kind of force or torque. There are many other factors that contribute to the self-locking property of a screw, but this is the most common factor.
    Screws with right-hand threads have threads that angle up to the right. The opposite is true for left-hand screws. While turning a screw counter-clockwise will loosen it, a right-handed person will use a right-handed thumb-up to turn it. Similarly, a left-handed person will use their thumb to turn a screw counter-clockwise. And vice versa.
    screwshaft

    Materials used to manufacture screw shaft

    Many materials are commonly used to manufacture screw shafts. The most common are steel, stainless steel, brass, bronze, and titanium. These materials have advantages and disadvantages that make them good candidates for screw production. Some screw types are also made of copper to fight corrosion and ensure durability over time. Other materials include nylon, Teflon, and aluminum. Brass screws are lightweight and have aesthetic appeal. The choice of material for a screw shaft depends on the use it will be made for.
    Shafts are typically produced using 3 steps. Screws are manufactured from large coils, wire, or round bar stock. After these are produced, the blanks are cut to the appropriate length and cold headed. This cold working process pressudes features into the screw head. More complicated screw shapes may require 2 heading processes to achieve the desired shape. The process is very precise and accurate, so it is an ideal choice for screw manufacturing.
    The type of material used to manufacture a screw shaft is crucial for the function it will serve. The type of material chosen will depend on where the screw is being used. If the screw is for an indoor project, you can opt for a cheaper, low-tech screw. But if the screw is for an outdoor project, you’ll need to use a specific type of screw. This is because outdoor screws will be exposed to humidity and temperature changes. Some screws may even be coated with a protective coating to protect them from the elements.
    Screws can also be self-threading and self-tapping. The self-threading or self-tapping screw creates a complementary helix within the material. Other screws are made with a thread which cuts into the material it fastens. Other types of screws create a helical groove on softer material to provide compression. The most common uses of a screw include holding 2 components together.
    There are many types of bolts available. Some are more expensive than others, but they are generally more resistant to corrosion. They can also be made from stainless steel or aluminum. But they require high-strength materials. If you’re wondering what screws are, consider this article. There are tons of options available for screw shaft manufacturing. You’ll be surprised how versatile they can be! The choice is yours, and you can be confident that you’ll find the screw shaft that will best fit your application.

    China OEM 2022 Vehicles VW ID4 Crozz Fast Electric Car SUV 5 Seats Electric Car SUV Used Left Hand Drive Electrical Car Automobile E Auto ID4 Electric Vehicle Motor Car   near me factory China OEM 2022 Vehicles VW ID4 Crozz Fast Electric Car SUV 5 Seats Electric Car SUV Used Left Hand Drive Electrical Car Automobile E Auto ID4 Electric Vehicle Motor Car   near me factory