Tag Archives: machine peeling

China Hot selling Automatic Rotary Cutter Hydraulic Drive Grinder/Plywood Peeling Knife Grinder Machine with Good quality

Product Description

 

 

 

Electromagnetic Automatic Knife Grinder

Model

YQ-1500

YQ-3000

YQ-3500

Max Grinding Length

1600 mm

3200mm

3600mm

Table Size

1550×180(200)mm

3000×180(200)mm

3550×180(200)mm

Total power

about 6.0kw

about 6.0kw

about 6.0kw

Example Specifications —-  YQ1500 

Max grinding length

1600mm 

Table size

1550×180(200)mm

Grinding wheel size

Φ200*Φ100*Φ32mm

Work voltage

380V / 440V ( can be customized ) 

Grinding wheel reciprocating speed

17m/min

Adjustable angel of work table

±90°

Driving method of grinding head

Transmission

Overall dimension

3850*1300*1300mm

Total power

6kw

Total weight

1800kg

Features

1. This machine mainly grind all type of long knives, like peeling machine knife, Granulator knife,cutting paper knife ,Shearing Blades, sliceing knives etc.
2. This machine can work long surface knife. Max. Working length is 1500mm.
3. This machine’s body is a design of gantry body, with the high-quality steel weld,The body has high strength and good rigidity.
4. The worktable use the electro magnetic chuck. And very convenience to clamp knife. The worktable is easy to adjust the angle by worm gear.
5. This machine use the inverter. It can be easy to adjust the horizontal and vertical speed of the grinding head.
6. Job accuracy of machine is 0.01mm.

 

Why Choose Us:

(1)   lasering your logo on products and designing logo is free 
(2)   Delivery time within 30days 
(3)   No else charge 
(4)   MOQ≥1 
(5)   Provide products quotation 
(6)   Provide Packaging customization service 
(7)   SupportWechat/Email/ / 
(8)   We specializein this field for 25 years 
(9)   Excellent after-sale system 
(10) Supporting visits to factory

Pre-sale service
1) Provide the free consultation of equipment

2) Provide the standard device and the flow chart
3) According to the clients’ special requirement ,offering the resonable plan and free design to help to select the equipment .
4)Welcome to visit our factory
Service during the sales
1) Inspect the machine before leaving the factory

2) Oversea install and debug the equipment
3) Train the first-line operator
After sales service

1) 24 hours online service

2) Provide the VIDEO with install and debug the equipment
3) Provide technical exchanging

FAQ:

 

Q1:Can you customize products for clients?

 A1: Yes We can customize and produce woodworking machines according to the customer’s requirements or drawings.

 

Q2:What about your products quality?

A2:We can provide you samples for quality inspection. If you order, we guarantee the quality is same with sample. In case of quality problem, we can sign agreements and our company will perform the duties.

 

Q3:How can we trust your factory?

A3:We recommend that you come to our factory to see the goods,to verify the real situation of the products, and know more about our factory.

 

Q4:Why does the price often change?

A4:The price depends on the latest prices of the raw materials.

 

Q5:What about the contract signing?

A5: If you’re satisfied with the products and our service, you can sign the contract with us, pay the deposit Then we’ll produce the machines as soon as possible. If you are far away, we can sign the contract by fax. We will ensure the quality of the products and the accessories are complete.

 

Q6: How about delivery?

A: when the product is ready, it can be delivered to you after your full payment. We}ll provide technical guidance.

Worm Gear Motors

Worm gear motors are often preferred for quieter operation because of the smooth sliding motion of the worm shaft. Unlike gear motors with teeth, which may click as the worm turns, worm gear motors can be installed in a quiet area. In this article, we will talk about the CZPT whirling process and the various types of worms available. We’ll also discuss the benefits of worm gear motors and worm wheel.
worm shaft

worm gear

In the case of a worm gear, the axial pitch of the ring pinion of the corresponding revolving worm is equal to the circular pitch of the mating revolving pinion of the worm gear. A worm with 1 start is known as a worm with a lead. This leads to a smaller worm wheel. Worms can work in tight spaces because of their small profile.
Generally, a worm gear has high efficiency, but there are a few disadvantages. Worm gears are not recommended for high-heat applications because of their high level of rubbing. A full-fluid lubricant film and the low wear level of the gear reduce friction and wear. Worm gears also have a lower wear rate than a standard gear. The worm shaft and worm gear is also more efficient than a standard gear.
The worm gear shaft is cradled within a self-aligning bearing block that is attached to the gearbox casing. The eccentric housing has radial bearings on both ends, enabling it to engage with the worm gear wheel. The drive is transferred to the worm gear shaft through bevel gears 13A, 1 fixed at the ends of the worm gear shaft and the other in the center of the cross-shaft.

worm wheel

In a worm gearbox, the pinion or worm gear is centered between a geared cylinder and a worm shaft. The worm gear shaft is supported at either end by a radial thrust bearing. A gearbox’s cross-shaft is fixed to a suitable drive means and pivotally attached to the worm wheel. The input drive is transferred to the worm gear shaft 10 through bevel gears 13A, 1 of which is fixed to the end of the worm gear shaft and the other at the centre of the cross-shaft.
Worms and worm wheels are available in several materials. The worm wheel is made of bronze alloy, aluminum, or steel. Aluminum bronze worm wheels are a good choice for high-speed applications. Cast iron worm wheels are cheap and suitable for light loads. MC nylon worm wheels are highly wear-resistant and machinable. Aluminum bronze worm wheels are available and are good for applications with severe wear conditions.
When designing a worm wheel, it is vital to determine the correct lubricant for the worm shaft and a corresponding worm wheel. A suitable lubricant should have a kinematic viscosity of 300 mm2/s and be used for worm wheel sleeve bearings. The worm wheel and worm shaft should be properly lubricated to ensure their longevity.

Multi-start worms

A multi-start worm gear screw jack combines the benefits of multiple starts with linear output speeds. The multi-start worm shaft reduces the effects of single start worms and large ratio gears. Both types of worm gears have a reversible worm that can be reversed or stopped by hand, depending on the application. The worm gear’s self-locking ability depends on the lead angle, pressure angle, and friction coefficient.
A single-start worm has a single thread running the length of its shaft. The worm advances 1 tooth per revolution. A multi-start worm has multiple threads in each of its threads. The gear reduction on a multi-start worm is equal to the number of teeth on the gear minus the number of starts on the worm shaft. In general, a multi-start worm has 2 or 3 threads.
Worm gears can be quieter than other types of gears because the worm shaft glides rather than clicking. This makes them an excellent choice for applications where noise is a concern. Worm gears can be made of softer material, making them more noise-tolerant. In addition, they can withstand shock loads. Compared to gears with toothed teeth, worm gears have a lower noise and vibration rate.
worm shaft

CZPT whirling process

The CZPT whirling process for worm shafts raises the bar for precision gear machining in small to medium production volumes. The CZPT whirling process reduces thread rolling, increases worm quality, and offers reduced cycle times. The CZPT LWN-90 whirling machine features a steel bed, programmable force tailstock, and five-axis interpolation for increased accuracy and quality.
Its 4,000-rpm, 5-kW whirling spindle produces worms and various types of screws. Its outer diameters are up to 2.5 inches, while its length is up to 20 inches. Its dry-cutting process uses a vortex tube to deliver chilled compressed air to the cutting point. Oil is also added to the mixture. The worm shafts produced are free of undercuts, reducing the amount of machining required.
Induction hardening is a process that takes advantage of the whirling process. The induction hardening process utilizes alternating current (AC) to cause eddy currents in metallic objects. The higher the frequency, the higher the surface temperature. The electrical frequency is monitored through sensors to prevent overheating. Induction heating is programmable so that only certain parts of the worm shaft will harden.

Common tangent at an arbitrary point on both surfaces of the worm wheel

A worm gear consists of 2 helical segments with a helix angle equal to 90 degrees. This shape allows the worm to rotate with more than 1 tooth per rotation. A worm’s helix angle is usually close to 90 degrees and the body length is fairly long in the axial direction. A worm gear with a lead angle g has similar properties as a screw gear with a helix angle of 90 degrees.
The axial cross section of a worm gear is not conventionally trapezoidal. Instead, the linear part of the oblique side is replaced by cycloid curves. These curves have a common tangent near the pitch line. The worm wheel is then formed by gear cutting, resulting in a gear with 2 meshing surfaces. This worm gear can rotate at high speeds and still operate quietly.
A worm wheel with a cycloid pitch is a more efficient worm gear. It reduces friction between the worm and the gear, resulting in greater durability, improved operating efficiency, and reduced noise. This pitch line also helps the worm wheel engage more evenly and smoothly. Moreover, it prevents interference with their appearance. It also makes worm wheel and gear engagement smoother.
worm shaft

Calculation of worm shaft deflection

There are several methods for calculating worm shaft deflection, and each method has its own set of disadvantages. These commonly used methods provide good approximations but are inadequate for determining the actual worm shaft deflection. For example, these methods do not account for the geometric modifications to the worm, such as its helical winding of teeth. Furthermore, they overestimate the stiffening effect of the gearing. Hence, efficient thin worm shaft designs require other approaches.
Fortunately, several methods exist to determine the maximum worm shaft deflection. These methods use the finite element method, and include boundary conditions and parameter calculations. Here, we look at a couple of methods. The first method, DIN 3996, calculates the maximum worm shaft deflection based on the test results, while the second one, AGMA 6022, uses the root diameter of the worm as the equivalent bending diameter.
The second method focuses on the basic parameters of worm gearing. We’ll take a closer look at each. We’ll examine worm gearing teeth and the geometric factors that influence them. Commonly, the range of worm gearing teeth is 1 to four, but it can be as large as twelve. Choosing the teeth should depend on optimization requirements, including efficiency and weight. For example, if a worm gearing needs to be smaller than the previous model, then a small number of teeth will suffice.

China Hot selling Automatic Rotary Cutter Hydraulic Drive Grinder/Plywood Peeling Knife Grinder Machine   with Good qualityChina Hot selling Automatic Rotary Cutter Hydraulic Drive Grinder/Plywood Peeling Knife Grinder Machine   with Good quality

China Good quality Spindle Less Servo Drive 8FT Veneer Peeling Machine Wood Veneer Machine for Making Plywood near me shop

Product Description

 

Product Description
 

8Feet veneer peeling machine

Model

YQVP2600-HP

Max.peeling length

2600mm

Max.cutting diameter

500mm

Thickness range

0.3mm-4mm

Peeling knife

2700*180*16mm

Cutting knife

2700*140*12.7mm

Core diameter of remaining

25-32mm

Diameter of single roller

125mm

Diameter of double roller

125mm

Diameter of CZPT screw

90mm

Power of Single roller

2*7.5kW

Power of double roller

2*11kW

The knife gap motor

1.5kw(servo motor)

The knife angle motor

1.5kw(servo motor)

Feeding motor

15kW(servo motor)

Clipper motor

4kw (servo motor)

Hydraulic station

3kw

Conveyor motor

2.2kW 

speed

40M-80m/minute(adjustable)

Weight diameter

10500kgs

Overall dimension

5600*2000*1800mm

Factory Price Custom Spindless Rotary 8 Feet Veneer Peeling Machine Lathe

Company Information

ZheJiang Yuequn Machinery Co., Ltd.

—————————–

ZheJiang Yuequn Machinery established in 1994 , it’s the biggest and professional plywood production machinery Manufacturer in
HangZhou city China .all the machine for exporting , over 50 countries .

The complete plywood production line include :

– log debarker
– veneer peeling machine

– veneer dryer machine

– veneer composer machine

– glue spreader

– cold press machine

– hot press machine
– plywood edge cutting saw

– sanding machine and so on

 

Packaging & Shipping

Why Choose Us:

Pre-sale service
1) Provide the free consultation of equipment

 

2) Provide the standard device and the flow chart

3) According to the clients’ special requirement ,offering the resonable plan and free design to help to select the equipment .

4)Welcome to visit our factory

Service during the sales
1) Inspect the machine before leaving the factory

 

2) Oversea install and debug the equipment

3) Train the first-line operator

After sales service

1) 24 hours online service

 

2) Provide the VIDEO with install and debug the equipment

3) Provide technical exchanging

 

FAQ

Q1:Can you customize products for clients?

 A1: Yes We can customize and produce woodworking machines according to the customer’s requirements or drawings.

 

Q2:What about your products quality?

A2:We can provide you samples for quality inspection. If you order, we guarantee the quality is same with sample. In case of quality problem, we can sign agreements and our company will perform the duties.

 

Q3:How can we trust your factory?

A3:We recommend that you come to our factory to see the goods,to verify the real situation of the products, and know more about our factory.

 

Q4:Why does the price often change?

A4:The price depends on the latest prices of the raw materials.

 

Q5:What about the contract signing?

A5: If you’re satisfied with the products and our service, you can sign the contract with us, pay the deposit Then we’ll produce the machines as soon as possible. If you are far away, we can sign the contract by fax. We will ensure the quality of the products and the accessories are complete.

 

Q6: How about delivery?

A: when the product is ready, it can be delivered to you after your full payment. We}ll provide technical guidance.

 

What You Should Know About Axle Shafts

There are several things you should know about axle shafts. These include what materials they’re made of, how they’re constructed, and the signs of wear and tear. Read on to learn more about axle shafts and how to properly maintain them. Axle shafts are a crucial part of any vehicle. But how can you tell if 1 is worn out? Here are some tips that can help you determine whether it’s time to replace it.

Materials used for axle shafts

When it comes to materials used in axle shafts, there are 2 common types of materials. One is carbon fiber, which is relatively uncommon for linear applications. Carbon fiber shafting is produced by CZPT(r). The main benefit of carbon fiber shafting is its ultra-low weight. A carbon fiber shaft of 20mm diameter weighs just 0.17kg, as opposed to 2.46kg for a steel shaft of the same size.
The other type of material used in axle shafts is forged steel. This material is strong, but it is difficult to machine. The resulting material has residual stresses, voids, and hard spots that make it unsuitable for some applications. A forged steel shaft will not be able to be refinished to its original dimensions. In such cases, the shaft must be machined down to reduce the material’s hardness.
Alternatively, you can choose to purchase a through-hardened shaft. These types of axle shafts are suitable for light cars and those that use single bearings on their hub. However, the increased diameter of the axle shaft will result in less resistance to shock loads and torsional forces. For these applications, it is best to use medium-carbon alloy steel (MCA), which contains nickel and chromium. In addition, you may also need to jack up your vehicle to replace the axle shaft.
The spline features of the axle shaft must mate with the spline feature on the axle assembly. The spline feature has a slight curve that optimizes contact surface area and distribution of load. The process involves hobbing and rolling, and it requires special tooling to form this profile. However, it is important to note that an axle shaft with a cut spline will have a 30% smaller diameter than the corresponding 1 with an involute profile.
Another common material is the 300M alloy, which is a modified 4340 chromoly. This alloy provides additional strength, but is more prone to cracking. For this reason, this alloy isn’t suited for street-driven vehicles. Axle shafts made from this alloy are magnaflushed to detect cracks before they cause catastrophic failure. This heat treatment is not as effective as the other materials, but it is still a good choice for axle shafts.
Driveshaft

Construction

There are 3 basic types of axle shafts: fully floating, three-quarter floating, and semi-floating. Depending on how the shaft is used, the axles can be either stationary or fully floating. Fully floating axle shafts are most common, but there are exceptions. Axle shafts may also be floating or stationary, or they may be fixed. When they are stationary, they are known as non-floating axles.
Different alloys have different properties. High-carbon steels are harder than low-carbon steels, while medium-carbon steels are less ductile. Medium-carbon steel is often used in axle shafts. Some shafts contain additional metals, including silicon, nickel, and copper, for case hardening. High-carbon steels are preferred over low-carbon steels. Axle shafts with high carbon content often have better heat-treatability than OE ones.
A semi-floating axle shaft has a single bearing between the hub and casing, relieving the main shear stress on the shaft but must still withstand other stresses. A half shaft needs to withstand bending loads from side thrust during cornering while transmitting driving torque. A three-quarter floating axle shaft is typically fitted to commercial vehicles that are more capable of handling higher axle loads and torque. However, it is possible to replace or upgrade the axle shaft with a replacement axle shaft, but this will require jacking the vehicle and removing the studs.
A half-floating axle is an alternative to a fixed-length rear axle. This axle design is ideal for mid-size trucks. It supports the weight of the mid-size truck and may support mid-size trucks with high towing capacities. The axle housing supports the inner end of the axle and also takes up the end thrust from the vehicle’s tires. A three-quarter floating axle, on the other hand, is a complex type that is not as simple as a semi-floating axle.
Axle shafts are heavy-duty load-bearing components that transmit rotational force from the rear differential gearbox to the rear wheels. The half shaft and the axle casing support the road wheel. Below is a diagram of different forces that can occur in the axle assembly depending on operating conditions. The total weight of the vehicle’s rear can exert a bending action on the half shaft, and the overhanging section of the shaft can be subject to a shearing force.
Driveshaft

Symptoms of wear out

The constant velocity axle, also called the half shaft, transmits power from the transmission to the wheels, allowing the vehicle to move forward. When it fails, it can result in many problems. Here are 4 common symptoms of a bad CV axle:
Bad vibrations: If you notice any sort of abnormal vibration while driving, this may be a sign of axle damage. Vibrations may accompany a strange noise coming from under the vehicle. You may also notice tire wobble. It is important to repair this problem as it could be harmful to your car’s handling and comfort. A damaged axle is generally accompanied by other problems, including a weak braking response.
A creaking or popping sound: If you hear this noise when turning your vehicle, you probably have a worn out CV axle. When the CV joints lose their balance, the driveshaft is no longer supported by the U-joints. This can cause a lot of vibrations, which can reduce your vehicle’s comfort and safety. Fortunately, there are easy ways to check for worn CV axles.
CV joints: A CV joint is located at each end of the axle shaft. In front-wheel drive vehicles, there are 2 CV joints, 1 on each axle. The outer CV joint connects the axle shaft to the wheel and experiences more movement. In fact, the CV joints are only as good as the boot. The most common symptoms of a failed CV joint include clicking and popping noises while turning or when accelerating.
CV joint: Oftentimes, CV joints wear out half of the axle shaft. While repairing a CV joint is a viable repair, it is more expensive than replacing the axle. In most cases, you should replace the CV joint. Replacement will save you time and money. ACV joints are a vital part of your vehicle’s drivetrain. Even if they are worn, they should be checked if they are loose.
Unresponsive acceleration: The vehicle may be jerky, shuddering, or slipping. This could be caused by a bent axle. The problem may be a loose U-joint or center bearing, and you should have your vehicle inspected immediately by a qualified mechanic. If you notice jerkiness, have a mechanic check the CV joints and other components of the vehicle. If these components are not working properly, the vehicle may be dangerous.
Driveshaft

Maintenance

There are several points of concern regarding the maintenance of axle shafts. It is imperative to check the axle for any damage and to lubricate it. If it is clean, it may be lubricated and is working properly. If not, it will require replacement. The CV boots need to be replaced. A broken axle shaft can result in catastrophic damage to the transmission or even cause an accident. Fortunately, there are several simple ways to maintain the axle shaft.
In addition to oil changes, it is important to check the differential lube level. Some differentials need cleaning or repacking every so often. CZPT Moreno Valley, CA technicians know how to inspect and maintain axles, and they can help you determine if a problem is affecting your vehicle’s performance. Some common signs of axle problems include excessive vibrations, clunking, and a high-pitched howling noise.
If you’ve noticed any of these warning signs, contact your vehicle’s manufacturer. Most manufacturers offer service for their axles. If it’s too rusted or damaged, they’ll replace it for you for free. If you’re in doubt, you can take it to a service center for a repair. They’ll be happy to assist you in any aspect of your vehicle’s maintenance. It’s never too early to begin.
CZPT Moreno Valley, CA technicians are well-versed in the repair of axles and differentials. The CV joint, which connects the car’s transmission to the rear wheels, is responsible for transferring the power from the engine to the wheels. Aside from the CV joint, there are also protective boots on both ends of the axle shaft. The protective boots can tear with age or use. When they tear, they allow grease and debris to escape and get into the joint.
While the CV joint is the most obvious place to replace it, this isn’t a time to ignore this important component. Taking care of the CV joint will protect your car from costly breakdowns at the track. While servicing half shafts can help prevent costly replacement of CV joints, it’s best to do it once a season or halfway through the season. ACV joints are essential for your car’s safety and function.

China Good quality Spindle Less Servo Drive 8FT Veneer Peeling Machine Wood Veneer Machine for Making Plywood   near me shop China Good quality Spindle Less Servo Drive 8FT Veneer Peeling Machine Wood Veneer Machine for Making Plywood   near me shop