Tag Archives: machine for making

China OEM High Speed Multi-Function Laminated Film LDPE HDPE Polythene PA Poly Heavy Duty / Light Duty Pouch Bag Making Machine with Servo-Drive System for Dog Cat Food near me factory

Product Description

 

SPECIFICATION
 

Center Lap Seal Pouch / Bag Making Machine Serious

Equipment Center Lap Seal 350 Center Lap Seal 450 Center Lap Seal 600
Model HD-350BTZ HD-450BTZ HD-600BTZ
Max. Unwinding Width(mm) 850 1050 1200
Max. Pouch Width(mm) 350 450 600
Min. Pouch Height(mm) 50
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-200  Depends on specific condition of machine operating and material

 

Center Lap & Fin Pouch / Bag Making Machine Serious

Equipment Center Lap & Fin Seal
350
Center Lap & Fin Seal
450
Center Lap & Fin Seal
600
Model HD-350BTQZ HD-450BTQZ HD-600BTQZ
Max. Unwinding Width(mm) 850 1050 1200
Max. Pouch Width(mm) 350 450 600
Min. Pouch Height(mm) 50
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-200  Depends on specific condition of machine operating and material

 

Center Seal Stand-Up Pouch / Bag Machine Serious

Equipment Center Lap & Fin Seal 450 Center Seal & Stand-up 600
Model HD-450BTZMML HD-600BTZMML
Max. Unwinding Width(mm) 1050 1200
Max. Pouch Width(mm) 450 600
Min. Pouch Height(mm) 30
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

 

3-Side Seal Pouch / Bag Making Machine Serious

Equipment 3-Side Seal 600
Model HD-600BU
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 30
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 200  Depends on specific condition of machine operating and material

 

3-Side Seal & Stand-Up Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up 600
Model HD-600BUML
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

3-Side Seal & Stand-Up Plus Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up Plus 600
Model HD-600BULL
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

 

3-Side Seal & Stand-Up Ultra Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up
Ultra 850
3-Side Seal & Stand-Up
Ultra 1100
3-Side Seal & Stand-Up
Ultra 1250
Model HD-850BU HD-1100BU HD-1250BU
Max. Unwinding Width(mm) 1500 Single Unwiding 1100 Double Unwiding 1250 Double Unwiding
Max. Pouch Width(mm) 850 1100 1250
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-180  Depends on specific condition of machine operating and material

 

Flat Bottom Pouch / Bag Making Machine Serious

Equipment Flat Bottom 600
Model HD-600BF
Max. Unwinding Width(mm) 1200
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 90-110  Depends on specific condition of machine operating and material

As a technology-based company with independent R&D and manufacturing capabilities, Tie Min’s founding team already has extensive experience in the flexible packaging industry more earlier before its establishement in 2001, which makes Tie Min can design and produce the bag / pouch machine from the perspective of customers – we came from the customers, and we are going back to the customers, we know flexible packaging industry better, so can make pouch / bag making machine right.After more than 20 years of continuous development in the industry, Tie Min has accumulated a wealth of experience in designing, technical and economic evaluation, manufacturing, installation, commissioning, staff training, and after-sales service, and have been striving to create lasting relationships with customers all over the world, guarantee that they can count on us for CZPT pricing and quality with zero hassle, which is based on a complete set of production and testing equipment, a perfect managment of supply chain, as well as a group of highly qualified professional technicians of designing, construction, and manufacturing.
Tie Min Machine is dedicated to helping customers get the most right solutions of flexible packaging. 
Let us know what we can do for your business by leaving us a message. We’re here to make sure you don’t have to worry about anything.
Features:  · PLC Controlled Pneumatic Locking Unwinding System integrated with extra EPC to achieve more precise control and more stable feeding – Pouch Making Speed and Yield Rate Guaranteed · Multiple Photoelectric Sensors and Mechanical Limits are applied to the material with and without printing to achieve production with different materials in just 1 machine – Early Investment Minimized · CRT Touch Screen with  Remote Diagnostic and Restoration Function, plus a full set of manual CZPT and mature after-sales service -Convenience of machine operation guaranteed · Multiple auto-running functions available, such as Auto counting, Hole Punching/ Length Measuring / Sealing Speed Setting, making it possible for multiple machines controlled by just 1 man – Labour Cost Minimized · Mature Warning and Auto Stop System avoid loss caused by Temperature Lossing, Abnormal Unwinding and Feeding, Photoelectric Sensor and Servo Motor Going Down, etc. to Minimize Material Waste – Production costs Minimized FAQ Q:Are you factory or trading company? A:We are an original FACTORY specializing in designing, manufacturing, and customizing pouch bag making machines for over 20 years, we sincerely and warmly welcome all kinds of clients including the end customers, dealers, and sole agencies discuss with us about all forms of cooperation. Q:Where is your factory located? A:We are located in HangZhou City, 2 hours from ZheJiang by train or car, and 3 hours from HangZhou by air. Q: What kind of pouch bags can your machine make? A:The regular machine types we are selling can produce varieties of laminated pouches/bags,  including but not limited to the following bag types: 2-Side seal pouch bag, 3-Side seal pouch bag, 4-Side seal pouch bag; Lap seal pouch bag, Fin seal pouch bag; Side gusset pouch bag, Bottom gusset pouch bag; Center seal pouch bag, Side seal pouch bag, Bottom seal pouch bag; Flat bottom pouch bag / Plough bottom pouch bag; K Seal pouch bag / Skirt seal pouch bag; Round bottom pouch bag / Doyen bag / Doypack; Corner bottom pouch bag / Plow bottom pouch bag/ Folded bottom pouch bag. We will be very glad to discuss with our clients if they have any special demand for packing solutions, providing them with varieties of customization. Q: What kinds of pouch bag material are available for your machine? A: Our machines can produce laminated pouch bags made with varieties of material, including Aluminum and Plastic like PET, BOPET, OPP, BOPP, LDPE, HDPE, PA, and so on, any special demands of material will be welcome to be discussed with us, we will be glad to help our customers to get the right packing solutions. Q:What’s your after-sale service policy? A:6 months warranty for electronic components + 12 months warranty for mechanical parts. On-site installation and adjustment or remote guidance via the internet Employee technical training Repair and Technical Support Q: What certification do you have? A: With the cooperation of a responsible production management team and an experienced technical team, we have obtained ISO9001 certification from UKAS and CE certification from SGS, and have independently developed more than 30 patents in the past 20 years.

How to Choose the Right Worm Shaft

You might be curious to know how to choose the right Worm Shaft. In this article, you will learn about worm modules with the same pitch diameter, Double-thread worm gears, and Self-locking worm drive. Once you have chosen the proper Worm Shaft, you will find it easier to use the equipment in your home. There are many advantages to selecting the right Worm Shaft. Read on to learn more.
worm shaft

Concave shape

The concave shape of a worm’s shaft is an important characteristic for the design of a worm gearing. Worm gearings can be found in a wide range of shapes, and the basic profile parameters are available in professional and firm literature. These parameters are used in geometry calculations, and a selection of the right worm gearing for a particular application can be based on these requirements.
The thread profile of a worm is defined by the tangent to the axis of its main cylinder. The teeth are shaped in a straight line with a slightly concave shape along the sides. It resembles a helical gear, and the profile of the worm itself is straight. This type of gearing is often used when the number of teeth is greater than a certain limit.
The geometry of a worm gear depends on the type and manufacturer. In the earliest days, worms were made similar to simple screw threads, and could be chased on a lathe. During this time, the worm was often made with straight-sided tools to produce threads in the acme plane. Later, grinding techniques improved the thread finish and reduced distortions resulting from hardening.
When a worm gearing has multiple teeth, the pitch angle is a key parameter. A greater pitch angle increases efficiency. If you want to increase the pitch angle without increasing the number of teeth, you can replace a worm pair with a different number of thread starts. The helix angle must increase while the center distance remains constant. A higher pitch angle, however, is almost never used for power transmissions.
The minimum number of gear teeth depends on the angle of pressure at zero gearing correction. The diameter of the worm is d1, and is based on a known module value, mx or mn. Generally, larger values of m are assigned to larger modules. And a smaller number of teeth is called a low pitch angle. In case of a low pitch angle, spiral gearing is used. The pitch angle of the worm gear is smaller than 10 degrees.
worm shaft

Multiple-thread worms

Multi-thread worms can be divided into sets of one, two, or 4 threads. The ratio is determined by the number of threads on each set and the number of teeth on the apparatus. The most common worm thread counts are 1,2,4, and 6. To find out how many threads you have, count the start and end of each thread and divide by two. Using this method, you will get the correct thread count every time.
The tangent plane of a worm’s pitch profile changes as the worm moves lengthwise along the thread. The lead angle is greatest at the throat, and decreases on both sides. The curvature radius r” varies proportionally with the worm’s radius, or pitch angle at the considered point. Hence, the worm leads angle, r, is increased with decreased inclination and decreases with increasing inclination.
Multi-thread worms are characterized by a constant leverage between the gear surface and the worm threads. The ratio of worm-tooth surfaces to the worm’s length varies, which enables the wormgear to be adjusted in the same direction. To optimize the gear contact between the worm and gear, the tangent relationship between the 2 surfaces is optimal.
The efficiency of worm gear drives is largely dependent on the helix angle of the worm. Multiple thread worms can improve the efficiency of the worm gear drive by as much as 25 to 50% compared to single-thread worms. Worm gears are made of bronze, which reduces friction and heat on the worm’s teeth. A specialized machine can cut the worm gears for maximum efficiency.

Double-thread worm gears

In many different applications, worm gears are used to drive a worm wheel. These gears are unique in that the worm cannot be reversed by the power applied to the worm wheel. Because of their self-locking properties, they can be used to prevent reversing motion, although this is not a dependable function. Applications for worm gears include hoisting equipment, elevators, chain blocks, fishing reels, and automotive power steering. Because of their compact size, these gears are often used in applications with limited space.
Worm sets typically exhibit more wear than other types of gears, and this means that they require more limited contact patterns in new parts. Worm wheel teeth are concave, making it difficult to measure tooth thickness with pins, balls, and gear tooth calipers. To measure tooth thickness, however, you can measure backlash, a measurement of the spacing between teeth in a gear. Backlash can vary from 1 worm gear to another, so it is important to check the backlash at several points. If the backlash is different in 2 places, this indicates that the teeth may have different spacing.
Single-thread worm gears provide high speed reduction but lower efficiency. A multi-thread worm gear can provide high efficiency and high speed, but this comes with a trade-off in terms of horsepower. However, there are many other applications for worm gears. In addition to heavy-duty applications, they are often used in light-duty gearboxes for a variety of functions. When used in conjunction with double-thread worms, they allow for a substantial speed reduction in 1 step.
Stainless-steel worm gears can be used in damp environments. The worm gear is not susceptible to rust and is ideal for wet and damp environments. The worm wheel’s smooth surfaces make cleaning them easy. However, they do require lubricants. The most common lubricant for worm gears is mineral oil. This lubricant is designed to protect the worm drive.
worm shaft

Self-locking worm drive

A self-locking worm drive prevents the platform from moving backward when the motor stops. A dynamic self-locking worm drive is also possible but does not include a holding brake. This type of self-locking worm drive is not susceptible to vibrations, but may rattle if released. In addition, it may require an additional brake to keep the platform from moving. A positive brake may be necessary for safety.
A self-locking worm drive does not allow for the interchangeability of the driven and driving gears. This is unlike spur gear trains that allow both to interchange positions. In a self-locking worm drive, the driving gear is always engaged and the driven gear remains stationary. The drive mechanism locks automatically when the worm is operated in the wrong manner. Several sources of information on self-locking worm gears include the Machinery’s Handbook.
A self-locking worm drive is not difficult to build and has a great mechanical advantage. In fact, the output of a self-locking worm drive cannot be backdriven by the input shaft. DIYers can build a self-locking worm drive by modifying threaded rods and off-the-shelf gears. However, it is easier to make a ratchet and pawl mechanism, and is significantly less expensive. However, it is important to understand that you can only drive 1 worm at a time.
Another advantage of a self-locking worm drive is the fact that it is not possible to interchange the input and output shafts. This is a major benefit of using such a mechanism, as you can achieve high gear reduction without increasing the size of the gear box. If you’re thinking about buying a self-locking worm gear for a specific application, consider the following tips to make the right choice.
An enveloping worm gear set is best for applications requiring high accuracy and efficiency, and minimum backlash. Its teeth are shaped differently, and the worm’s threads are modified to increase surface contact. They are more expensive to manufacture than their single-start counterparts, but this type is best for applications where accuracy is crucial. The worm drive is also a great option for heavy trucks because of their large size and high-torque capacity.

China OEM High Speed Multi-Function Laminated Film LDPE HDPE Polythene PA Poly Heavy Duty / Light Duty Pouch Bag Making Machine with Servo-Drive System for Dog Cat Food   near me factory China OEM High Speed Multi-Function Laminated Film LDPE HDPE Polythene PA Poly Heavy Duty / Light Duty Pouch Bag Making Machine with Servo-Drive System for Dog Cat Food   near me factory

China wholesaler Laminated Film LDPE HDPE Polythene PA Poly Lap Seal / Fin Seal / Lap Seam / Fin Seam Pouch Bag Making Machine with Servo-Drive System for Fertilizer T-Shirt near me supplier

Product Description

 

SPECIFICATION
 

Center Lap Seal Pouch / Bag Making Machine Serious

Equipment Center Lap Seal 350 Center Lap Seal 450 Center Lap Seal 600
Model HD-350BTZ HD-450BTZ HD-600BTZ
Max. Unwinding Width(mm) 850 1050 1200
Max. Pouch Width(mm) 350 450 600
Min. Pouch Height(mm) 50
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-200  Depends on specific condition of machine operating and material

 

Center Lap & Fin Pouch / Bag Making Machine Serious

Equipment Center Lap & Fin Seal
350
Center Lap & Fin Seal
450
Center Lap & Fin Seal
600
Model HD-350BTQZ HD-450BTQZ HD-600BTQZ
Max. Unwinding Width(mm) 850 1050 1200
Max. Pouch Width(mm) 350 450 600
Min. Pouch Height(mm) 50
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-200  Depends on specific condition of machine operating and material

 

Center Seal Stand-Up Pouch / Bag Machine Serious

Equipment Center Lap & Fin Seal 450 Center Seal & Stand-up 600
Model HD-450BTZMML HD-600BTZMML
Max. Unwinding Width(mm) 1050 1200
Max. Pouch Width(mm) 450 600
Min. Pouch Height(mm) 30
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

 

3-Side Seal Pouch / Bag Making Machine Serious

Equipment 3-Side Seal 600
Model HD-600BU
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 30
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 200  Depends on specific condition of machine operating and material

 

3-Side Seal & Stand-Up Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up 600
Model HD-600BUML
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

3-Side Seal & Stand-Up Plus Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up Plus 600
Model HD-600BULL
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

 

3-Side Seal & Stand-Up Ultra Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up
Ultra 850
3-Side Seal & Stand-Up
Ultra 1100
3-Side Seal & Stand-Up
Ultra 1250
Model HD-850BU HD-1100BU HD-1250BU
Max. Unwinding Width(mm) 1500 Single Unwiding 1100 Double Unwiding 1250 Double Unwiding
Max. Pouch Width(mm) 850 1100 1250
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-180  Depends on specific condition of machine operating and material

 

Flat Bottom Pouch / Bag Making Machine Serious

Equipment Flat Bottom 600
Model HD-600BF
Max. Unwinding Width(mm) 1200
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 90-110  Depends on specific condition of machine operating and material

As a technology-based company with independent R&D and manufacturing capabilities, Tie Min’s founding team already has extensive experience in the flexible packaging industry more earlier before its establishement in 2001, which makes Tie Min can design and produce the bag / pouch machine from the perspective of customers – we came from the customers, and we are going back to the customers, we know flexible packaging industry better, so can make pouch / bag making machine right.After more than 20 years of continuous development in the industry, Tie Min has accumulated a wealth of experience in designing, technical and economic evaluation, manufacturing, installation, commissioning, staff training, and after-sales service, and have been striving to create lasting relationships with customers all over the world, guarantee that they can count on us for CZPT pricing and quality with zero hassle, which is based on a complete set of production and testing equipment, a perfect managment of supply chain, as well as a group of highly qualified professional technicians of designing, construction, and manufacturing.
Tie Min Machine is dedicated to helping customers get the most right solutions of flexible packaging. 
Let us know what we can do for your business by leaving us a message. We’re here to make sure you don’t have to worry about anything.
Features:  · PLC Controlled Pneumatic Locking Unwinding System integrated with extra EPC to achieve more precise control and more stable feeding – Pouch Making Speed and Yield Rate Guaranteed · Multiple Photoelectric Sensors and Mechanical Limits are applied to the material with and without printing to achieve production with different materials in just 1 machine – Early Investment Minimized · CRT Touch Screen with  Remote Diagnostic and Restoration Function, plus a full set of manual CZPT and mature after-sales service -Convenience of machine operation guaranteed · Multiple auto-running functions available, such as Auto counting, Hole Punching/ Length Measuring / Sealing Speed Setting, making it possible for multiple machines controlled by just 1 man – Labour Cost Minimized · Mature Warning and Auto Stop System avoid loss caused by Temperature Lossing, Abnormal Unwinding and Feeding, Photoelectric Sensor and Servo Motor Going Down, etc. to Minimize Material Waste – Production costs Minimized FAQ Q:Are you factory or trading company? A:We are an original FACTORY specializing in designing, manufacturing, and customizing pouch bag making machines for over 20 years, we sincerely and warmly welcome all kinds of clients including the end customers, dealers, and sole agencies discuss with us about all forms of cooperation. Q:Where is your factory located? A:We are located in HangZhou City, 2 hours from ZheJiang by train or car, and 3 hours from HangZhou by air. Q: What kind of pouch bags can your machine make? A:The regular machine types we are selling can produce varieties of laminated pouches/bags,  including but not limited to the following bag types: 2-Side seal pouch bag, 3-Side seal pouch bag, 4-Side seal pouch bag; Lap seal pouch bag, Fin seal pouch bag; Side gusset pouch bag, Bottom gusset pouch bag; Center seal pouch bag, Side seal pouch bag, Bottom seal pouch bag; Flat bottom pouch bag / Plough bottom pouch bag; K Seal pouch bag / Skirt seal pouch bag; Round bottom pouch bag / Doyen bag / Doypack; Corner bottom pouch bag / Plow bottom pouch bag/ Folded bottom pouch bag. We will be very glad to discuss with our clients if they have any special demand for packing solutions, providing them with varieties of customization. Q: What kinds of pouch bag material are available for your machine? A: Our machines can produce laminated pouch bags made with varieties of material, including Aluminum and Plastic like PET, BOPET, OPP, BOPP, LDPE, HDPE, PA, and so on, any special demands of material will be welcome to be discussed with us, we will be glad to help our customers to get the right packing solutions. Q:What’s your after-sale service policy? A:6 months warranty for electronic components + 12 months warranty for mechanical parts. On-site installation and adjustment or remote guidance via the internet Employee technical training Repair and Technical Support Q: What certification do you have? A: With the cooperation of a responsible production management team and an experienced technical team, we have obtained ISO9001 certification from UKAS and CE certification from SGS, and have independently developed more than 30 patents in the past 20 years.

What Are Screw Shaft Threads?

A screw shaft is a threaded part used to fasten other components. The threads on a screw shaft are often described by their Coefficient of Friction, which describes how much friction is present between the mating surfaces. This article discusses these characteristics as well as the Material and Helix angle. You’ll have a better understanding of your screw shaft’s threads after reading this article. Here are some examples. Once you understand these details, you’ll be able to select the best screw nut for your needs.
screwshaft

Coefficient of friction between the mating surfaces of a nut and a screw shaft

There are 2 types of friction coefficients. Dynamic friction and static friction. The latter refers to the amount of friction a nut has to resist an opposing motion. In addition to the material strength, a higher coefficient of friction can cause stick-slip. This can lead to intermittent running behavior and loud squeaking. Stick-slip may lead to a malfunctioning plain bearing. Rough shafts can be used to improve this condition.
The 2 types of friction coefficients are related to the applied force. When applying force, the applied force must equal the nut’s pitch diameter. When the screw shaft is tightened, the force may be removed. In the case of a loosening clamp, the applied force is smaller than the bolt’s pitch diameter. Therefore, the higher the property class of the bolt, the lower the coefficient of friction.
In most cases, the screwface coefficient of friction is lower than the nut face. This is because of zinc plating on the joint surface. Moreover, power screws are commonly used in the aerospace industry. Whether or not they are power screws, they are typically made of carbon steel, alloy steel, or stainless steel. They are often used in conjunction with bronze or plastic nuts, which are preferred in higher-duty applications. These screws often require no holding brakes and are extremely easy to use in many applications.
The coefficient of friction between the mating surfaces of t-screws is highly dependent on the material of the screw and the nut. For example, screws with internal lubricated plastic nuts use bearing-grade bronze nuts. These nuts are usually used on carbon steel screws, but can be used with stainless steel screws. In addition to this, they are easy to clean.

Helix angle

In most applications, the helix angle of a screw shaft is an important factor for torque calculation. There are 2 types of helix angle: right and left hand. The right hand screw is usually smaller than the left hand one. The left hand screw is larger than the right hand screw. However, there are some exceptions to the rule. A left hand screw may have a greater helix angle than a right hand screw.
A screw’s helix angle is the angle formed by the helix and the axial line. Although the helix angle is not usually changed, it can have a significant effect on the processing of the screw and the amount of material conveyed. These changes are more common in 2 stage and special mixing screws, and metering screws. These measurements are crucial for determining the helix angle. In most cases, the lead angle is the correct angle when the screw shaft has the right helix angle.
High helix screws have large leads, sometimes up to 6 times the screw diameter. These screws reduce the screw diameter, mass, and inertia, allowing for higher speed and precision. High helix screws are also low-rotation, so they minimize vibrations and audible noises. But the right helix angle is important in any application. You must carefully choose the right type of screw for the job at hand.
If you choose a screw gear that has a helix angle other than parallel, you should select a thrust bearing with a correspondingly large center distance. In the case of a screw gear, a 45-degree helix angle is most common. A helix angle greater than zero degrees is also acceptable. Mixing up helix angles is beneficial because it allows for a variety of center distances and unique applications.
screwshaft

Thread angle

The thread angle of a screw shaft is measured from the base of the head of the screw to the top of the screw’s thread. In America, the standard screw thread angle is 60 degrees. The standard thread angle was not widely adopted until the early twentieth century. A committee was established by the Franklin Institute in 1864 to study screw threads. The committee recommended the Sellers thread, which was modified into the United States Standard Thread. The standardized thread was adopted by the United States Navy in 1868 and was recommended for construction by the Master Car Builders’ Association in 1871.
Generally speaking, the major diameter of a screw’s threads is the outside diameter. The major diameter of a nut is not directly measured, but can be determined with go/no-go gauges. It is necessary to understand the major and minor diameters in relation to each other in order to determine a screw’s thread angle. Once this is known, the next step is to determine how much of a pitch is necessary to ensure a screw’s proper function.
Helix angle and thread angle are 2 different types of angles that affect screw efficiency. For a lead screw, the helix angle is the angle between the helix of the thread and the line perpendicular to the axis of rotation. A lead screw has a greater helix angle than a helical one, but has higher frictional losses. A high-quality lead screw requires a higher torque to rotate. Thread angle and lead angle are complementary angles, but each screw has its own specific advantages.
Screw pitch and TPI have little to do with tolerances, craftsmanship, quality, or cost, but rather the size of a screw’s thread relative to its diameter. Compared to a standard screw, the fine and coarse threads are easier to tighten. The coarser thread is deeper, which results in lower torques. If a screw fails because of torsional shear, it is likely to be a result of a small minor diameter.

Material

Screws have a variety of different sizes, shapes, and materials. They are typically machined on CNC machines and lathes. Each type is used for different purposes. The size and material of a screw shaft are influenced by how it will be used. The following sections give an overview of the main types of screw shafts. Each 1 is designed to perform a specific function. If you have questions about a specific type, contact your local machine shop.
Lead screws are cheaper than ball screws and are used in light-duty, intermittent applications. Lead screws, however, have poor efficiency and are not recommended for continuous power transmission. But, they are effective in vertical applications and are more compact. Lead screws are typically used as a kinematic pair with a ball screw. Some types of lead screws also have self-locking properties. Because they have a low coefficient of friction, they have a compact design and very few parts.
Screws are made of a variety of metals and alloys. Steel is an economical and durable material, but there are also alloy steel and stainless steel types. Bronze nuts are the most common and are often used in higher-duty applications. Plastic nuts provide low-friction, which helps reduce the drive torques. Stainless steel screws are also used in high-performance applications, and may be made of titanium. The materials used to create screw shafts vary, but they all have their specific functions.
Screws are used in a wide range of applications, from industrial and consumer products to transportation equipment. They are used in many different industries, and the materials they’re made of can determine their life. The life of a screw depends on the load that it bears, the design of its internal structure, lubrication, and machining processes. When choosing screw assemblies, look for a screw made from the highest quality steels possible. Usually, the materials are very clean, so they’re a great choice for a screw. However, the presence of imperfections may cause a normal fatigue failure.
screwshaft

Self-locking features

Screws are known to be self-locking by nature. The mechanism for this feature is based on several factors, such as the pitch angle of the threads, material pairing, lubrication, and heating. This feature is only possible if the shaft is subjected to conditions that are not likely to cause the threads to loosen on their own. The self-locking ability of a screw depends on several factors, including the pitch angle of the thread flank and the coefficient of sliding friction between the 2 materials.
One of the most common uses of screws is in a screw top container lid, corkscrew, threaded pipe joint, vise, C-clamp, and screw jack. Other applications of screw shafts include transferring power, but these are often intermittent and low-power operations. Screws are also used to move material in Archimedes’ screw, auger earth drill, screw conveyor, and micrometer.
A common self-locking feature for a screw is the presence of a lead screw. A screw with a low PV value is safe to operate, but a screw with high PV will need a lower rotation speed. Another example is a self-locking screw that does not require lubrication. The PV value is also dependent on the material of the screw’s construction, as well as its lubrication conditions. Finally, a screw’s end fixity – the way the screw is supported – affects the performance and efficiency of a screw.
Lead screws are less expensive and easier to manufacture. They are a good choice for light-weight and intermittent applications. These screws also have self-locking capabilities. They can be self-tightened and require less torque for driving than other types. The advantage of lead screws is their small size and minimal number of parts. They are highly efficient in vertical and intermittent applications. They are not as accurate as lead screws and often have backlash, which is caused by insufficient threads.

China wholesaler Laminated Film LDPE HDPE Polythene PA Poly Lap Seal / Fin Seal / Lap Seam / Fin Seam Pouch Bag Making Machine with Servo-Drive System for Fertilizer T-Shirt   near me supplier China wholesaler Laminated Film LDPE HDPE Polythene PA Poly Lap Seal / Fin Seal / Lap Seam / Fin Seam Pouch Bag Making Machine with Servo-Drive System for Fertilizer T-Shirt   near me supplier

China Good quality Multi-Function Laminated Film LDPE HDPE Polythene PA Poly Flat Bottom / Plough Bottom Pouch Bag Making Machine with Servo-Drive System for Cloth Snack with Great quality

Product Description

 

SPECIFICATION
 

Center Lap Seal Pouch / Bag Making Machine Serious

Equipment Center Lap Seal 350 Center Lap Seal 450 Center Lap Seal 600
Model HD-350BTZ HD-450BTZ HD-600BTZ
Max. Unwinding Width(mm) 850 1050 1200
Max. Pouch Width(mm) 350 450 600
Min. Pouch Height(mm) 50
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-200  Depends on specific condition of machine operating and material

 

Center Lap & Fin Pouch / Bag Making Machine Serious

Equipment Center Lap & Fin Seal
350
Center Lap & Fin Seal
450
Center Lap & Fin Seal
600
Model HD-350BTQZ HD-450BTQZ HD-600BTQZ
Max. Unwinding Width(mm) 850 1050 1200
Max. Pouch Width(mm) 350 450 600
Min. Pouch Height(mm) 50
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-200  Depends on specific condition of machine operating and material

 

Center Seal Stand-Up Pouch / Bag Machine Serious

Equipment Center Lap & Fin Seal 450 Center Seal & Stand-up 600
Model HD-450BTZMML HD-600BTZMML
Max. Unwinding Width(mm) 1050 1200
Max. Pouch Width(mm) 450 600
Min. Pouch Height(mm) 30
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

 

3-Side Seal Pouch / Bag Making Machine Serious

Equipment 3-Side Seal 600
Model HD-600BU
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 30
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 200  Depends on specific condition of machine operating and material

 

3-Side Seal & Stand-Up Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up 600
Model HD-600BUML
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

3-Side Seal & Stand-Up Plus Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up Plus 600
Model HD-600BULL
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

 

3-Side Seal & Stand-Up Ultra Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up
Ultra 850
3-Side Seal & Stand-Up
Ultra 1100
3-Side Seal & Stand-Up
Ultra 1250
Model HD-850BU HD-1100BU HD-1250BU
Max. Unwinding Width(mm) 1500 Single Unwiding 1100 Double Unwiding 1250 Double Unwiding
Max. Pouch Width(mm) 850 1100 1250
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-180  Depends on specific condition of machine operating and material

 

Flat Bottom Pouch / Bag Making Machine Serious

Equipment Flat Bottom 600
Model HD-600BF
Max. Unwinding Width(mm) 1200
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 90-110  Depends on specific condition of machine operating and material

As a technology-based company with independent R&D and manufacturing capabilities, Tie Min’s founding team already has extensive experience in the flexible packaging industry more earlier before its establishement in 2001, which makes Tie Min can design and produce the bag / pouch machine from the perspective of customers – we came from the customers, and we are going back to the customers, we know flexible packaging industry better, so can make pouch / bag making machine right.After more than 20 years of continuous development in the industry, Tie Min has accumulated a wealth of experience in designing, technical and economic evaluation, manufacturing, installation, commissioning, staff training, and after-sales service, and have been striving to create lasting relationships with customers all over the world, guarantee that they can count on us for CZPT pricing and quality with zero hassle, which is based on a complete set of production and testing equipment, a perfect managment of supply chain, as well as a group of highly qualified professional technicians of designing, construction, and manufacturing.
Tie Min Machine is dedicated to helping customers get the most right solutions of flexible packaging. 
Let us know what we can do for your business by leaving us a message. We’re here to make sure you don’t have to worry about anything.
Features:  · PLC Controlled Pneumatic Locking Unwinding System integrated with extra EPC to achieve more precise control and more stable feeding – Pouch Making Speed and Yield Rate Guaranteed · Multiple Photoelectric Sensors and Mechanical Limits are applied to the material with and without printing to achieve production with different materials in just 1 machine – Early Investment Minimized · CRT Touch Screen with  Remote Diagnostic and Restoration Function, plus a full set of manual CZPT and mature after-sales service -Convenience of machine operation guaranteed · Multiple auto-running functions available, such as Auto counting, Hole Punching/ Length Measuring / Sealing Speed Setting, making it possible for multiple machines controlled by just 1 man – Labour Cost Minimized · Mature Warning and Auto Stop System avoid loss caused by Temperature Lossing, Abnormal Unwinding and Feeding, Photoelectric Sensor and Servo Motor Going Down, etc. to Minimize Material Waste – Production costs Minimized FAQ Q:Are you factory or trading company? A:We are an original FACTORY specializing in designing, manufacturing, and customizing pouch bag making machines for over 20 years, we sincerely and warmly welcome all kinds of clients including the end customers, dealers, and sole agencies discuss with us about all forms of cooperation. Q:Where is your factory located? A:We are located in HangZhou City, 2 hours from ZheJiang by train or car, and 3 hours from HangZhou by air. Q: What kind of pouch bags can your machine make? A:The regular machine types we are selling can produce varieties of laminated pouches/bags,  including but not limited to the following bag types: 2-Side seal pouch bag, 3-Side seal pouch bag, 4-Side seal pouch bag; Lap seal pouch bag, Fin seal pouch bag; Side gusset pouch bag, Bottom gusset pouch bag; Center seal pouch bag, Side seal pouch bag, Bottom seal pouch bag; Flat bottom pouch bag / Plough bottom pouch bag; K Seal pouch bag / Skirt seal pouch bag; Round bottom pouch bag / Doyen bag / Doypack; Corner bottom pouch bag / Plow bottom pouch bag/ Folded bottom pouch bag. We will be very glad to discuss with our clients if they have any special demand for packing solutions, providing them with varieties of customization. Q: What kinds of pouch bag material are available for your machine? A: Our machines can produce laminated pouch bags made with varieties of material, including Aluminum and Plastic like PET, BOPET, OPP, BOPP, LDPE, HDPE, PA, and so on, any special demands of material will be welcome to be discussed with us, we will be glad to help our customers to get the right packing solutions. Q:What’s your after-sale service policy? A:6 months warranty for electronic components + 12 months warranty for mechanical parts. On-site installation and adjustment or remote guidance via the internet Employee technical training Repair and Technical Support Q: What certification do you have? A: With the cooperation of a responsible production management team and an experienced technical team, we have obtained ISO9001 certification from UKAS and CE certification from SGS, and have independently developed more than 30 patents in the past 20 years.

The Functions of Splined Shaft Bearings

Splined shafts are the most common types of bearings for machine tools. They are made of a wide variety of materials, including metals and non-metals such as Delrin and nylon. They are often fabricated to reduce deflection. The tooth profile will become deformed with time, as the shaft is used over a long period of time. Splined shafts are available in a huge range of materials and lengths.

Functions

Splined shafts are used in a variety of applications and industries. They are an effective anti-rotational device, as well as a reliable means of transmitting torque. Other types of shafts are available, including key shafts, but splines are the most convenient for transmitting torque. The following article discusses the functions of splines and why they are a superior choice. Listed below are a few examples of applications and industries in which splines are used.
Splined shafts can be of several styles, depending on the application and mechanical system in question. The differences between splined shaft styles include the design of teeth, overall strength, transfer of rotational concentricity, sliding ability, and misalignment tolerance. Listed below are a few examples of splines, as well as some of their benefits. The difference between these styles is not mutually exclusive; instead, each style has a distinct set of pros and cons.
A splined shaft is a cylindrical shaft with teeth or ridges that correspond to a specific angular position. This allows a shaft to transfer torque while maintaining angular correspondence between tracks. A splined shaft is defined as a cylindrical member with several grooves cut into its circumference. These grooves are equally spaced around the shaft and form a series of projecting keys. These features give the shaft a rounded appearance and allow it to fit perfectly into a grooved cylindrical member.
While the most common applications of splines are for shortening or extending shafts, they can also be used to secure mechanical assemblies. An “involute spline” spline has a groove that is wider than its counterparts. The result is that a splined shaft will resist separation during operation. They are an ideal choice for applications where deflection is an issue.
A spline shaft’s radial torsion load distribution is equally distributed, unless a bevel gear is used. The radial torsion load is evenly distributed and will not exert significant load concentration. If the spline couplings are not aligned correctly, the spline connection can fail quickly, causing significant fretting fatigue and wear. A couple of papers discuss this issue in more detail.
splineshaft

Types

There are many different types of splined shafts. Each type features an evenly spaced helix of grooves on its outer surface. These grooves are either parallel or involute. Their shape allows them to be paired with gears and interchange rotary and linear motion. Splines are often cold-rolled or cut. The latter has increased strength compared to cut spines. These types of shafts are commonly used in applications requiring high strength, accuracy, and smoothness.
Another difference between internal and external splined shafts lies in the manufacturing process. The former is made of wood, while the latter is made of steel or a metal alloy. The process of manufacturing splined shafts involves cutting furrows into the surface of the material. Both processes are expensive and require expert skill. The main advantage of splined shafts is their adaptability to a wide range of applications.
In general, splined shafts are used in machinery where the rotation is transferred to an internal splined member. This member can be a gear or some other rotary device. These types of shafts are often packaged together as a hub assembly. Cleaning and lubricating are essential to the life of these components. If you’re using them on a daily basis, you’ll want to make sure to regularly inspect them.
Crowned splines are usually involute. The teeth of these splines form a spiral pattern. They are used for smaller diameter shafts because they add strength. Involute splines are also used on instrument drives and valve shafts. Serration standards are found in the SAE. Both kinds of splines can also contain a ball bearing for high torque. The difference between the 2 types of splines is the number of teeth on the shaft.
Internal splines have many advantages over external ones. For example, an internal spline shaft can be made using a grinding wheel instead of a CNC machine. It also uses a more accurate and economical process. Furthermore, it allows for a shorter manufacturing cycle, which is essential when splining high-speed machines. In addition, it stabilizes the relative phase between the spline and thread.
splineshaft

Manufacturing methods

There are several methods used to fabricate a splined shaft. Key and splined shafts are constructed from 2 separate parts that are shaped in a synchronized manner to transfer torque uniformly. Hot rolling is 1 method, while cold rolling utilizes low temperatures to form metal. Both methods enhance mechanical properties, surface finishes, and precision. The advantage of cold rolling is its cost-effectiveness.
Cold forming is 1 method, as well as machining and assembling. Cold forming is a unique process that allows the spline to be shaped to the desired shape. The resulting shape provides maximum contact area and torsional strength. Standard splines are available in standard sizes, but custom lengths can also be ordered. CZPT offers various auxiliary equipment, such as mating sleeves and flanged bushings.
Cold forging is another method. This method produces long splined shafts that are used in automobile propellers. After the spline portion is cut out, it is worked on in a hobbing machine. Work hardening enhances the root strength of the splined portion. It can be used for bearings, gears, and other mechanical components. Listed below are the manufacturing methods for splined shafts.
Parallel splines are the simplest of the splined shaft manufacturing methods. Parallel splines are usually welded to shafts, while involute splines are made of metal or non-metals. Splines are available in a wide variety of lengths and materials. The process is usually accompanied by a process called milling. The workpiece rotates to produce the serrated surface.
Splines are internal or external grooves in a splined shaft. They work in combination with keyways to transfer torque. Male and female splines are used in gears. Female and male splines correspond to 1 another to ensure proper angular correspondence. Involute splines have more surface area and thus are stronger than external splines. Moreover, they help the shaft fit into a grooved cylindrical member without misalignment.
A variety of other methods of manufacturing a splined shaft can be used to produce a splined shaft. Spline shafts can be produced using broaching and shaping, 2 precision machining methods. Broaching uses a metal tool with successively larger teeth to remove metal and create ridges and holes in the surface of a material. However, this process is expensive and requires special expertise.
splineshaft

Applications

The splined shaft is a mechanical component with a helix-like shape formed by the equal spacing of grooves in a circular ring. The splines can either have parallel or involute sides. The splines minimize stress concentration in stationary joints and can be used in both rotary and linear motion. In some cases, splines are rolled rather than cut. The latter is more durable than cut splines and is often used in applications requiring high strength, accuracy, and smooth finish.
Splined shafts are commonly made of carbon steel. This alloy steel has a low carbon content, making it easy to work with. Carbon steel is a great choice for splines because it is malleable. Generally, high-quality carbon steel provides a consistent motion. Steel alloys are also available that contain nickel, chromium, copper, and other metals. If you’re unsure of the right material for your application, you can consult a spline chart.
Splines are a versatile mechanical component. They are easy to cut and fit. Splines can be internal or external, with teeth positioned at equal intervals on both sides of the shaft. This allows the shaft to engage with the hub around the entire circumference of the hub. It also increases load capacity by creating a constant multiple-tooth point of contact with the hub. For this reason, they’re used extensively in rotary and linear motion.
Splined shafts are used in a wide variety of industries. CZPT Inc. offers custom and standard splined shafts for a variety of applications. When choosing a splined shaft for a specific application, consider the surrounding mated components, torque requirements, and size requirements. These 3 factors will make it the ideal choice for your rotary equipment. And you’ll be pleased with the end result!
There are many types of splines and their applications are endless. They transfer torque and angular misalignment between parts, and they also enable the axial rotation of assembled components. Therefore, splines are an essential component of machinery and are used in a wide range of applications. This type of shaft can be found in various types of machines, from household appliances to industrial machinery. So, the next time you’re looking for a splined shaft, make sure you look for a splined one.

China Good quality Multi-Function Laminated Film LDPE HDPE Polythene PA Poly Flat Bottom / Plough Bottom Pouch Bag Making Machine with Servo-Drive System for Cloth Snack   with Great qualityChina Good quality Multi-Function Laminated Film LDPE HDPE Polythene PA Poly Flat Bottom / Plough Bottom Pouch Bag Making Machine with Servo-Drive System for Cloth Snack   with Great quality

China Good quality Spindle Less Servo Drive 8FT Veneer Peeling Machine Wood Veneer Machine for Making Plywood near me shop

Product Description

 

Product Description
 

8Feet veneer peeling machine

Model

YQVP2600-HP

Max.peeling length

2600mm

Max.cutting diameter

500mm

Thickness range

0.3mm-4mm

Peeling knife

2700*180*16mm

Cutting knife

2700*140*12.7mm

Core diameter of remaining

25-32mm

Diameter of single roller

125mm

Diameter of double roller

125mm

Diameter of CZPT screw

90mm

Power of Single roller

2*7.5kW

Power of double roller

2*11kW

The knife gap motor

1.5kw(servo motor)

The knife angle motor

1.5kw(servo motor)

Feeding motor

15kW(servo motor)

Clipper motor

4kw (servo motor)

Hydraulic station

3kw

Conveyor motor

2.2kW 

speed

40M-80m/minute(adjustable)

Weight diameter

10500kgs

Overall dimension

5600*2000*1800mm

Factory Price Custom Spindless Rotary 8 Feet Veneer Peeling Machine Lathe

Company Information

ZheJiang Yuequn Machinery Co., Ltd.

—————————–

ZheJiang Yuequn Machinery established in 1994 , it’s the biggest and professional plywood production machinery Manufacturer in
HangZhou city China .all the machine for exporting , over 50 countries .

The complete plywood production line include :

– log debarker
– veneer peeling machine

– veneer dryer machine

– veneer composer machine

– glue spreader

– cold press machine

– hot press machine
– plywood edge cutting saw

– sanding machine and so on

 

Packaging & Shipping

Why Choose Us:

Pre-sale service
1) Provide the free consultation of equipment

 

2) Provide the standard device and the flow chart

3) According to the clients’ special requirement ,offering the resonable plan and free design to help to select the equipment .

4)Welcome to visit our factory

Service during the sales
1) Inspect the machine before leaving the factory

 

2) Oversea install and debug the equipment

3) Train the first-line operator

After sales service

1) 24 hours online service

 

2) Provide the VIDEO with install and debug the equipment

3) Provide technical exchanging

 

FAQ

Q1:Can you customize products for clients?

 A1: Yes We can customize and produce woodworking machines according to the customer’s requirements or drawings.

 

Q2:What about your products quality?

A2:We can provide you samples for quality inspection. If you order, we guarantee the quality is same with sample. In case of quality problem, we can sign agreements and our company will perform the duties.

 

Q3:How can we trust your factory?

A3:We recommend that you come to our factory to see the goods,to verify the real situation of the products, and know more about our factory.

 

Q4:Why does the price often change?

A4:The price depends on the latest prices of the raw materials.

 

Q5:What about the contract signing?

A5: If you’re satisfied with the products and our service, you can sign the contract with us, pay the deposit Then we’ll produce the machines as soon as possible. If you are far away, we can sign the contract by fax. We will ensure the quality of the products and the accessories are complete.

 

Q6: How about delivery?

A: when the product is ready, it can be delivered to you after your full payment. We}ll provide technical guidance.

 

What You Should Know About Axle Shafts

There are several things you should know about axle shafts. These include what materials they’re made of, how they’re constructed, and the signs of wear and tear. Read on to learn more about axle shafts and how to properly maintain them. Axle shafts are a crucial part of any vehicle. But how can you tell if 1 is worn out? Here are some tips that can help you determine whether it’s time to replace it.

Materials used for axle shafts

When it comes to materials used in axle shafts, there are 2 common types of materials. One is carbon fiber, which is relatively uncommon for linear applications. Carbon fiber shafting is produced by CZPT(r). The main benefit of carbon fiber shafting is its ultra-low weight. A carbon fiber shaft of 20mm diameter weighs just 0.17kg, as opposed to 2.46kg for a steel shaft of the same size.
The other type of material used in axle shafts is forged steel. This material is strong, but it is difficult to machine. The resulting material has residual stresses, voids, and hard spots that make it unsuitable for some applications. A forged steel shaft will not be able to be refinished to its original dimensions. In such cases, the shaft must be machined down to reduce the material’s hardness.
Alternatively, you can choose to purchase a through-hardened shaft. These types of axle shafts are suitable for light cars and those that use single bearings on their hub. However, the increased diameter of the axle shaft will result in less resistance to shock loads and torsional forces. For these applications, it is best to use medium-carbon alloy steel (MCA), which contains nickel and chromium. In addition, you may also need to jack up your vehicle to replace the axle shaft.
The spline features of the axle shaft must mate with the spline feature on the axle assembly. The spline feature has a slight curve that optimizes contact surface area and distribution of load. The process involves hobbing and rolling, and it requires special tooling to form this profile. However, it is important to note that an axle shaft with a cut spline will have a 30% smaller diameter than the corresponding 1 with an involute profile.
Another common material is the 300M alloy, which is a modified 4340 chromoly. This alloy provides additional strength, but is more prone to cracking. For this reason, this alloy isn’t suited for street-driven vehicles. Axle shafts made from this alloy are magnaflushed to detect cracks before they cause catastrophic failure. This heat treatment is not as effective as the other materials, but it is still a good choice for axle shafts.
Driveshaft

Construction

There are 3 basic types of axle shafts: fully floating, three-quarter floating, and semi-floating. Depending on how the shaft is used, the axles can be either stationary or fully floating. Fully floating axle shafts are most common, but there are exceptions. Axle shafts may also be floating or stationary, or they may be fixed. When they are stationary, they are known as non-floating axles.
Different alloys have different properties. High-carbon steels are harder than low-carbon steels, while medium-carbon steels are less ductile. Medium-carbon steel is often used in axle shafts. Some shafts contain additional metals, including silicon, nickel, and copper, for case hardening. High-carbon steels are preferred over low-carbon steels. Axle shafts with high carbon content often have better heat-treatability than OE ones.
A semi-floating axle shaft has a single bearing between the hub and casing, relieving the main shear stress on the shaft but must still withstand other stresses. A half shaft needs to withstand bending loads from side thrust during cornering while transmitting driving torque. A three-quarter floating axle shaft is typically fitted to commercial vehicles that are more capable of handling higher axle loads and torque. However, it is possible to replace or upgrade the axle shaft with a replacement axle shaft, but this will require jacking the vehicle and removing the studs.
A half-floating axle is an alternative to a fixed-length rear axle. This axle design is ideal for mid-size trucks. It supports the weight of the mid-size truck and may support mid-size trucks with high towing capacities. The axle housing supports the inner end of the axle and also takes up the end thrust from the vehicle’s tires. A three-quarter floating axle, on the other hand, is a complex type that is not as simple as a semi-floating axle.
Axle shafts are heavy-duty load-bearing components that transmit rotational force from the rear differential gearbox to the rear wheels. The half shaft and the axle casing support the road wheel. Below is a diagram of different forces that can occur in the axle assembly depending on operating conditions. The total weight of the vehicle’s rear can exert a bending action on the half shaft, and the overhanging section of the shaft can be subject to a shearing force.
Driveshaft

Symptoms of wear out

The constant velocity axle, also called the half shaft, transmits power from the transmission to the wheels, allowing the vehicle to move forward. When it fails, it can result in many problems. Here are 4 common symptoms of a bad CV axle:
Bad vibrations: If you notice any sort of abnormal vibration while driving, this may be a sign of axle damage. Vibrations may accompany a strange noise coming from under the vehicle. You may also notice tire wobble. It is important to repair this problem as it could be harmful to your car’s handling and comfort. A damaged axle is generally accompanied by other problems, including a weak braking response.
A creaking or popping sound: If you hear this noise when turning your vehicle, you probably have a worn out CV axle. When the CV joints lose their balance, the driveshaft is no longer supported by the U-joints. This can cause a lot of vibrations, which can reduce your vehicle’s comfort and safety. Fortunately, there are easy ways to check for worn CV axles.
CV joints: A CV joint is located at each end of the axle shaft. In front-wheel drive vehicles, there are 2 CV joints, 1 on each axle. The outer CV joint connects the axle shaft to the wheel and experiences more movement. In fact, the CV joints are only as good as the boot. The most common symptoms of a failed CV joint include clicking and popping noises while turning or when accelerating.
CV joint: Oftentimes, CV joints wear out half of the axle shaft. While repairing a CV joint is a viable repair, it is more expensive than replacing the axle. In most cases, you should replace the CV joint. Replacement will save you time and money. ACV joints are a vital part of your vehicle’s drivetrain. Even if they are worn, they should be checked if they are loose.
Unresponsive acceleration: The vehicle may be jerky, shuddering, or slipping. This could be caused by a bent axle. The problem may be a loose U-joint or center bearing, and you should have your vehicle inspected immediately by a qualified mechanic. If you notice jerkiness, have a mechanic check the CV joints and other components of the vehicle. If these components are not working properly, the vehicle may be dangerous.
Driveshaft

Maintenance

There are several points of concern regarding the maintenance of axle shafts. It is imperative to check the axle for any damage and to lubricate it. If it is clean, it may be lubricated and is working properly. If not, it will require replacement. The CV boots need to be replaced. A broken axle shaft can result in catastrophic damage to the transmission or even cause an accident. Fortunately, there are several simple ways to maintain the axle shaft.
In addition to oil changes, it is important to check the differential lube level. Some differentials need cleaning or repacking every so often. CZPT Moreno Valley, CA technicians know how to inspect and maintain axles, and they can help you determine if a problem is affecting your vehicle’s performance. Some common signs of axle problems include excessive vibrations, clunking, and a high-pitched howling noise.
If you’ve noticed any of these warning signs, contact your vehicle’s manufacturer. Most manufacturers offer service for their axles. If it’s too rusted or damaged, they’ll replace it for you for free. If you’re in doubt, you can take it to a service center for a repair. They’ll be happy to assist you in any aspect of your vehicle’s maintenance. It’s never too early to begin.
CZPT Moreno Valley, CA technicians are well-versed in the repair of axles and differentials. The CV joint, which connects the car’s transmission to the rear wheels, is responsible for transferring the power from the engine to the wheels. Aside from the CV joint, there are also protective boots on both ends of the axle shaft. The protective boots can tear with age or use. When they tear, they allow grease and debris to escape and get into the joint.
While the CV joint is the most obvious place to replace it, this isn’t a time to ignore this important component. Taking care of the CV joint will protect your car from costly breakdowns at the track. While servicing half shafts can help prevent costly replacement of CV joints, it’s best to do it once a season or halfway through the season. ACV joints are essential for your car’s safety and function.

China Good quality Spindle Less Servo Drive 8FT Veneer Peeling Machine Wood Veneer Machine for Making Plywood   near me shop China Good quality Spindle Less Servo Drive 8FT Veneer Peeling Machine Wood Veneer Machine for Making Plywood   near me shop

China manufacturer Multi-Function Laminated Film LDPE HDPE Polythene PA Poly Round Bottom / Doyen / Doypack Pouch Bag Making Machine with Servo-Drive System for Dog Cat Food with high quality

Product Description

 

SPECIFICATION
 

Center Lap Seal Pouch / Bag Making Machine Serious

Equipment Center Lap Seal 350 Center Lap Seal 450 Center Lap Seal 600
Model HD-350BTZ HD-450BTZ HD-600BTZ
Max. Unwinding Width(mm) 850 1050 1200
Max. Pouch Width(mm) 350 450 600
Min. Pouch Height(mm) 50
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-200  Depends on specific condition of machine operating and material

 

Center Lap & Fin Pouch / Bag Making Machine Serious

Equipment Center Lap & Fin Seal
350
Center Lap & Fin Seal
450
Center Lap & Fin Seal
600
Model HD-350BTQZ HD-450BTQZ HD-600BTQZ
Max. Unwinding Width(mm) 850 1050 1200
Max. Pouch Width(mm) 350 450 600
Min. Pouch Height(mm) 50
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-200  Depends on specific condition of machine operating and material

 

Center Seal Stand-Up Pouch / Bag Machine Serious

Equipment Center Lap & Fin Seal 450 Center Seal & Stand-up 600
Model HD-450BTZMML HD-600BTZMML
Max. Unwinding Width(mm) 1050 1200
Max. Pouch Width(mm) 450 600
Min. Pouch Height(mm) 30
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

 

3-Side Seal Pouch / Bag Making Machine Serious

Equipment 3-Side Seal 600
Model HD-600BU
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 30
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 200  Depends on specific condition of machine operating and material

 

3-Side Seal & Stand-Up Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up 600
Model HD-600BUML
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

3-Side Seal & Stand-Up Plus Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up Plus 600
Model HD-600BULL
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

 

3-Side Seal & Stand-Up Ultra Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up
Ultra 850
3-Side Seal & Stand-Up
Ultra 1100
3-Side Seal & Stand-Up
Ultra 1250
Model HD-850BU HD-1100BU HD-1250BU
Max. Unwinding Width(mm) 1500 Single Unwiding 1100 Double Unwiding 1250 Double Unwiding
Max. Pouch Width(mm) 850 1100 1250
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-180  Depends on specific condition of machine operating and material

 

Flat Bottom Pouch / Bag Making Machine Serious

Equipment Flat Bottom 600
Model HD-600BF
Max. Unwinding Width(mm) 1200
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 90-110  Depends on specific condition of machine operating and material

As a technology-based company with independent R&D and manufacturing capabilities, Tie Min’s founding team already has extensive experience in the flexible packaging industry more earlier before its establishement in 2001, which makes Tie Min can design and produce the bag / pouch machine from the perspective of customers – we came from the customers, and we are going back to the customers, we know flexible packaging industry better, so can make pouch / bag making machine right.After more than 20 years of continuous development in the industry, Tie Min has accumulated a wealth of experience in designing, technical and economic evaluation, manufacturing, installation, commissioning, staff training, and after-sales service, and have been striving to create lasting relationships with customers all over the world, guarantee that they can count on us for CZPT pricing and quality with zero hassle, which is based on a complete set of production and testing equipment, a perfect managment of supply chain, as well as a group of highly qualified professional technicians of designing, construction, and manufacturing.
Tie Min Machine is dedicated to helping customers get the most right solutions of flexible packaging. 
Let us know what we can do for your business by leaving us a message. We’re here to make sure you don’t have to worry about anything.
Features:  · PLC Controlled Pneumatic Locking Unwinding System integrated with extra EPC to achieve more precise control and more stable feeding – Pouch Making Speed and Yield Rate Guaranteed · Multiple Photoelectric Sensors and Mechanical Limits are applied to the material with and without printing to achieve production with different materials in just 1 machine – Early Investment Minimized · CRT Touch Screen with  Remote Diagnostic and Restoration Function, plus a full set of manual CZPT and mature after-sales service -Convenience of machine operation guaranteed · Multiple auto-running functions available, such as Auto counting, Hole Punching/ Length Measuring / Sealing Speed Setting, making it possible for multiple machines controlled by just 1 man – Labour Cost Minimized · Mature Warning and Auto Stop System avoid loss caused by Temperature Lossing, Abnormal Unwinding and Feeding, Photoelectric Sensor and Servo Motor Going Down, etc. to Minimize Material Waste – Production costs Minimized FAQ Q:Are you factory or trading company? A:We are an original FACTORY specializing in designing, manufacturing, and customizing pouch bag making machines for over 20 years, we sincerely and warmly welcome all kinds of clients including the end customers, dealers, and sole agencies discuss with us about all forms of cooperation. Q:Where is your factory located? A:We are located in HangZhou City, 2 hours from ZheJiang by train or car, and 3 hours from HangZhou by air. Q: What kind of pouch bags can your machine make? A:The regular machine types we are selling can produce varieties of laminated pouches/bags,  including but not limited to the following bag types: 2-Side seal pouch bag, 3-Side seal pouch bag, 4-Side seal pouch bag; Lap seal pouch bag, Fin seal pouch bag; Side gusset pouch bag, Bottom gusset pouch bag; Center seal pouch bag, Side seal pouch bag, Bottom seal pouch bag; Flat bottom pouch bag / Plough bottom pouch bag; K Seal pouch bag / Skirt seal pouch bag; Round bottom pouch bag / Doyen bag / Doypack; Corner bottom pouch bag / Plow bottom pouch bag/ Folded bottom pouch bag. We will be very glad to discuss with our clients if they have any special demand for packing solutions, providing them with varieties of customization. Q: What kinds of pouch bag material are available for your machine? A: Our machines can produce laminated pouch bags made with varieties of material, including Aluminum and Plastic like PET, BOPET, OPP, BOPP, LDPE, HDPE, PA, and so on, any special demands of material will be welcome to be discussed with us, we will be glad to help our customers to get the right packing solutions. Q:What’s your after-sale service policy? A:6 months warranty for electronic components + 12 months warranty for mechanical parts. On-site installation and adjustment or remote guidance via the internet Employee technical training Repair and Technical Support Q: What certification do you have? A: With the cooperation of a responsible production management team and an experienced technical team, we have obtained ISO9001 certification from UKAS and CE certification from SGS, and have independently developed more than 30 patents in the past 20 years.

Stiffness and Torsional Vibration of Spline-Couplings

In this paper, we describe some basic characteristics of spline-coupling and examine its torsional vibration behavior. We also explore the effect of spline misalignment on rotor-spline coupling. These results will assist in the design of improved spline-coupling systems for various applications. The results are presented in Table 1.
splineshaft

Stiffness of spline-coupling

The stiffness of a spline-coupling is a function of the meshing force between the splines in a rotor-spline coupling system and the static vibration displacement. The meshing force depends on the coupling parameters such as the transmitting torque and the spline thickness. It increases nonlinearly with the spline thickness.
A simplified spline-coupling model can be used to evaluate the load distribution of splines under vibration and transient loads. The axle spline sleeve is displaced a z-direction and a resistance moment T is applied to the outer face of the sleeve. This simple model can satisfy a wide range of engineering requirements but may suffer from complex loading conditions. Its asymmetric clearance may affect its engagement behavior and stress distribution patterns.
The results of the simulations show that the maximum vibration acceleration in both Figures 10 and 22 was 3.03 g/s. This results indicate that a misalignment in the circumferential direction increases the instantaneous impact. Asymmetry in the coupling geometry is also found in the meshing. The right-side spline’s teeth mesh tightly while those on the left side are misaligned.
Considering the spline-coupling geometry, a semi-analytical model is used to compute stiffness. This model is a simplified form of a classical spline-coupling model, with submatrices defining the shape and stiffness of the joint. As the design clearance is a known value, the stiffness of a spline-coupling system can be analyzed using the same formula.
The results of the simulations also show that the spline-coupling system can be modeled using MASTA, a high-level commercial CAE tool for transmission analysis. In this case, the spline segments were modeled as a series of spline segments with variable stiffness, which was calculated based on the initial gap between spline teeth. Then, the spline segments were modelled as a series of splines of increasing stiffness, accounting for different manufacturing variations. The resulting analysis of the spline-coupling geometry is compared to those of the finite-element approach.
Despite the high stiffness of a spline-coupling system, the contact status of the contact surfaces often changes. In addition, spline coupling affects the lateral vibration and deformation of the rotor. However, stiffness nonlinearity is not well studied in splined rotors because of the lack of a fully analytical model.
splineshaft

Characteristics of spline-coupling

The study of spline-coupling involves a number of design factors. These include weight, materials, and performance requirements. Weight is particularly important in the aeronautics field. Weight is often an issue for design engineers because materials have varying dimensional stability, weight, and durability. Additionally, space constraints and other configuration restrictions may require the use of spline-couplings in certain applications.
The main parameters to consider for any spline-coupling design are the maximum principal stress, the maldistribution factor, and the maximum tooth-bearing stress. The magnitude of each of these parameters must be smaller than or equal to the external spline diameter, in order to provide stability. The outer diameter of the spline must be at least 4 inches larger than the inner diameter of the spline.
Once the physical design is validated, the spline coupling knowledge base is created. This model is pre-programmed and stores the design parameter signals, including performance and manufacturing constraints. It then compares the parameter values to the design rule signals, and constructs a geometric representation of the spline coupling. A visual model is created from the input signals, and can be manipulated by changing different parameters and specifications.
The stiffness of a spline joint is another important parameter for determining the spline-coupling stiffness. The stiffness distribution of the spline joint affects the rotor’s lateral vibration and deformation. A finite element method is a useful technique for obtaining lateral stiffness of spline joints. This method involves many mesh refinements and requires a high computational cost.
The diameter of the spline-coupling must be large enough to transmit the torque. A spline with a larger diameter may have greater torque-transmitting capacity because it has a smaller circumference. However, the larger diameter of a spline is thinner than the shaft, and the latter may be more suitable if the torque is spread over a greater number of teeth.
Spline-couplings are classified according to their tooth profile along the axial and radial directions. The radial and axial tooth profiles affect the component’s behavior and wear damage. Splines with a crowned tooth profile are prone to angular misalignment. Typically, these spline-couplings are oversized to ensure durability and safety.

Stiffness of spline-coupling in torsional vibration analysis

This article presents a general framework for the study of torsional vibration caused by the stiffness of spline-couplings in aero-engines. It is based on a previous study on spline-couplings. It is characterized by the following 3 factors: bending stiffness, total flexibility, and tangential stiffness. The first criterion is the equivalent diameter of external and internal splines. Both the spline-coupling stiffness and the displacement of splines are evaluated by using the derivative of the total flexibility.
The stiffness of a spline joint can vary based on the distribution of load along the spline. Variables affecting the stiffness of spline joints include the torque level, tooth indexing errors, and misalignment. To explore the effects of these variables, an analytical formula is developed. The method is applicable for various kinds of spline joints, such as splines with multiple components.
Despite the difficulty of calculating spline-coupling stiffness, it is possible to model the contact between the teeth of the shaft and the hub using an analytical approach. This approach helps in determining key magnitudes of coupling operation such as contact peak pressures, reaction moments, and angular momentum. This approach allows for accurate results for spline-couplings and is suitable for both torsional vibration and structural vibration analysis.
The stiffness of spline-coupling is commonly assumed to be rigid in dynamic models. However, various dynamic phenomena associated with spline joints must be captured in high-fidelity drivetrain models. To accomplish this, a general analytical stiffness formulation is proposed based on a semi-analytical spline load distribution model. The resulting stiffness matrix contains radial and tilting stiffness values as well as torsional stiffness. The analysis is further simplified with the blockwise inversion method.
It is essential to consider the torsional vibration of a power transmission system before selecting the coupling. An accurate analysis of torsional vibration is crucial for coupling safety. This article also discusses case studies of spline shaft wear and torsionally-induced failures. The discussion will conclude with the development of a robust and efficient method to simulate these problems in real-life scenarios.
splineshaft

Effect of spline misalignment on rotor-spline coupling

In this study, the effect of spline misalignment in rotor-spline coupling is investigated. The stability boundary and mechanism of rotor instability are analyzed. We find that the meshing force of a misaligned spline coupling increases nonlinearly with spline thickness. The results demonstrate that the misalignment is responsible for the instability of the rotor-spline coupling system.
An intentional spline misalignment is introduced to achieve an interference fit and zero backlash condition. This leads to uneven load distribution among the spline teeth. A further spline misalignment of 50um can result in rotor-spline coupling failure. The maximum tensile root stress shifted to the left under this condition.
Positive spline misalignment increases the gear mesh misalignment. Conversely, negative spline misalignment has no effect. The right-handed spline misalignment is opposite to the helix hand. The high contact area is moved from the center to the left side. In both cases, gear mesh is misaligned due to deflection and tilting of the gear under load.
This variation of the tooth surface is measured as the change in clearance in the transverse plain. The radial and axial clearance values are the same, while the difference between the 2 is less. In addition to the frictional force, the axial clearance of the splines is the same, which increases the gear mesh misalignment. Hence, the same procedure can be used to determine the frictional force of a rotor-spline coupling.
Gear mesh misalignment influences spline-rotor coupling performance. This misalignment changes the distribution of the gear mesh and alters contact and bending stresses. Therefore, it is essential to understand the effects of misalignment in spline couplings. Using a simplified system of helical gear pair, Hong et al. examined the load distribution along the tooth interface of the spline. This misalignment caused the flank contact pattern to change. The misaligned teeth exhibited deflection under load and developed a tilting moment on the gear.
The effect of spline misalignment in rotor-spline couplings is minimized by using a mechanism that reduces backlash. The mechanism comprises cooperably splined male and female members. One member is formed by 2 coaxially aligned splined segments with end surfaces shaped to engage in sliding relationship. The connecting device applies axial loads to these segments, causing them to rotate relative to 1 another.

China manufacturer Multi-Function Laminated Film LDPE HDPE Polythene PA Poly Round Bottom / Doyen / Doypack Pouch Bag Making Machine with Servo-Drive System for Dog Cat Food   with high qualityChina manufacturer Multi-Function Laminated Film LDPE HDPE Polythene PA Poly Round Bottom / Doyen / Doypack Pouch Bag Making Machine with Servo-Drive System for Dog Cat Food   with high quality

China high quality Auto Creasing Rule Cutting Machine for Corrgated Dies Making (Die Board making) with Good quality

Product Description

Auto Cutter Machine for Die Making (Auto bender machine for die cutting)
worthytall

 

Technical Parameters         Blade thickness(mm)
0.71 (VK_QX_A) 1.07-1.42(VK_QX_B)
Blade height(mm) 23-24mm 23-24mm
Maximum feeding speed 30m/min
Feeding Accuracy 0.03/300mm
Bridge Mode
  1. Automatic continuous Die Punch bridge, bridge height adjustable(15-18mm)Width(5-10mm) Gear Motor drive
Cutting Mode
  1. Automatic Die Punch cut(Automatic identification alarm and self Monitor)Gear Motor Driven Full Power
Rule Cassettes
  1. 2 Standard resistance -free rule cassettes
Function/Advantages
  1. Connect to the computer of automatic bender  machine without manual operation
  2. Intelligent cutting line program differential lengths of creasing line can be intelligently calculated according to differential over lap patterns,it is more convenience and time saving without manual operation. One key select lines by colour or layers.  Automatically break off and shrink.
  3. Cut the arc line.
  4. Multi tasks :several groups of Creasing Lines can be finished simultaneously with high speed and Bridging and cutting can be done at same times,as well as Bending Rules with Auto bender machine
Best Files format DXF,DWG,AL,CDR,PLT
Weight 230kg Size 1660*1150*1540
Power 110V 220V/50HZ 60HZ  500W
Air Pressure 0.6-0.8Mpa
Warranty 12 Month Mother Board Life Long Warranty

Traning service
Training: The training is free of charge.You just meed to pay for the around tickets,food and hotel.The whole training will cost 7 days.
 

  1. We will dispatch our technician to your company to install the machine and train your technicians, The whole training lessons are including the machine and software.
  2.  More ever we can Train You how to install the machine by Team viewer under our Engineers who is good at English and the machine.

 
Customized content
A.product range
Flat&rotary die board,cutting rules,creasing rules,creasing matrix,anvil cover,doctor blade,manual die making machine,auto-bender machine.
sample making machine,nick grinder,trash-cleaning machine,folding gluer machine and so on. We are the general agent of Spanish polycut anvil cover and American Trupoint doctor blade in China.
B.our advantages
1.we are factory providing die making whole parts.
2.MOQ or NO MOQ
3.Delivery 7-30 days on time
4.Top quality guaranteed by skilled workers,managing system and status of facilities.
5.Advanced equipment.such as laser cutting machine,automatic bender machine.Sample making machine.etc.
6.Customized size and spec/OEM available
7.Near HangZhou and ZheJiang .convenient transpotation
8.With famous Grandcorp Brand and new YT brand
9.The general agent of Spanish polycut anvil cover and American Trupoint doctor blade in China
C.Better service
1.QC system 100% inspection before shipment
3.Packing standard package/pallet or container/As per customized

The picture for you reference 
                          

>>> Package & Shipping
Each machine is well packed with export standard wooden box.
We will make photos for the machine before the shipping and let you know the processing of the packing and loading.

>>> Our Exibition 2018 Sino Packing Expo

>>> Our Services
1. Our machine is guaranteed for 1 year, not including normal consuming parts.
2. 24 hour technical support by email or calling -137-1262-4566.
3. User-friendly English manual and Video CD for machine using and maintaining.
4. Our self-developed English software can do all kinds of pattern recognition.
5. We supply 1 year warranty and 5 years engineering service.

>>> Please Let Us Know
1.what machine do you need?
2.what materials will be processed? The size and thickness?
3.what is your business scope? Are you end user or distributor?

Any more product information, please contact us !  Customer Needs is my Pursuit !

Guide to Drive Shafts and U-Joints

If you’re concerned about the performance of your car’s driveshaft, you’re not alone. Many car owners are unaware of the warning signs of a failed driveshaft, but knowing what to look for can help you avoid costly repairs. Here is a brief guide on drive shafts, U-joints and maintenance intervals. Listed below are key points to consider before replacing a vehicle driveshaft.
air-compressor

Symptoms of Driveshaft Failure

Identifying a faulty driveshaft is easy if you’ve ever heard a strange noise from under your car. These sounds are caused by worn U-joints and bearings supporting the drive shaft. When they fail, the drive shafts stop rotating properly, creating a clanking or squeaking sound. When this happens, you may hear noise from the side of the steering wheel or floor.
In addition to noise, a faulty driveshaft can cause your car to swerve in tight corners. It can also lead to suspended bindings that limit overall control. Therefore, you should have these symptoms checked by a mechanic as soon as you notice them. If you notice any of the symptoms above, your next step should be to tow your vehicle to a mechanic. To avoid extra trouble, make sure you’ve taken precautions by checking your car’s oil level.
In addition to these symptoms, you should also look for any noise from the drive shaft. The first thing to look for is the squeak. This was caused by severe damage to the U-joint attached to the drive shaft. In addition to noise, you should also look for rust on the bearing cap seals. In extreme cases, your car can even shudder when accelerating.
Vibration while driving can be an early warning sign of a driveshaft failure. Vibration can be due to worn bushings, stuck sliding yokes, or even springs or bent yokes. Excessive torque can be caused by a worn center bearing or a damaged U-joint. The vehicle may make unusual noises in the chassis system.
If you notice these signs, it’s time to take your car to a mechanic. You should check regularly, especially heavy vehicles. If you’re not sure what’s causing the noise, check your car’s transmission, engine, and rear differential. If you suspect that a driveshaft needs to be replaced, a certified mechanic can replace the driveshaft in your car.
air-compressor

Drive shaft type

Driveshafts are used in many different types of vehicles. These include four-wheel drive, front-engine rear-wheel drive, motorcycles and boats. Each type of drive shaft has its own purpose. Below is an overview of the 3 most common types of drive shafts:
The driveshaft is a circular, elongated shaft that transmits torque from the engine to the wheels. Drive shafts often contain many joints to compensate for changes in length or angle. Some drive shafts also include connecting shafts and internal constant velocity joints. Some also include torsional dampers, spline joints, and even prismatic joints. The most important thing about the driveshaft is that it plays a vital role in transmitting torque from the engine to the wheels.
The drive shaft needs to be both light and strong to move torque. While steel is the most commonly used material for automotive driveshafts, other materials such as aluminum, composites, and carbon fiber are also commonly used. It all depends on the purpose and size of the vehicle. Precision Manufacturing is a good source for OEM products and OEM driveshafts. So when you’re looking for a new driveshaft, keep these factors in mind when buying.
Cardan joints are another common drive shaft. A universal joint, also known as a U-joint, is a flexible coupling that allows 1 shaft to drive the other at an angle. This type of drive shaft allows power to be transmitted while the angle of the other shaft is constantly changing. While a gimbal is a good option, it’s not a perfect solution for all applications.
CZPT, Inc. has state-of-the-art machinery to service all types of drive shafts, from small cars to race cars. They serve a variety of needs, including racing, industry and agriculture. Whether you need a new drive shaft or a simple adjustment, the staff at CZPT can meet all your needs. You’ll be back on the road soon!

U-joint

If your car yoke or u-joint shows signs of wear, it’s time to replace them. The easiest way to replace them is to follow the steps below. Use a large flathead screwdriver to test. If you feel any movement, the U-joint is faulty. Also, inspect the bearing caps for damage or rust. If you can’t find the u-joint wrench, try checking with a flashlight.
When inspecting U-joints, make sure they are properly lubricated and lubricated. If the joint is dry or poorly lubricated, it can quickly fail and cause your car to squeak while driving. Another sign that a joint is about to fail is a sudden, excessive whine. Check your u-joints every year or so to make sure they are in proper working order.
Whether your u-joint is sealed or lubricated will depend on the make and model of your vehicle. When your vehicle is off-road, you need to install lubricable U-joints for durability and longevity. A new driveshaft or derailleur will cost more than a U-joint. Also, if you don’t have a good understanding of how to replace them, you may need to do some transmission work on your vehicle.
When replacing the U-joint on the drive shaft, be sure to choose an OEM replacement whenever possible. While you can easily repair or replace the original head, if the u-joint is not lubricated, you may need to replace it. A damaged gimbal joint can cause problems with your car’s transmission or other critical components. Replacing your car’s U-joint early can ensure its long-term performance.
Another option is to use 2 CV joints on the drive shaft. Using multiple CV joints on the drive shaft helps you in situations where alignment is difficult or operating angles do not match. This type of driveshaft joint is more expensive and complex than a U-joint. The disadvantages of using multiple CV joints are additional length, weight, and reduced operating angle. There are many reasons to use a U-joint on a drive shaft.
air-compressor

maintenance interval

Checking U-joints and slip joints is a critical part of routine maintenance. Most vehicles are equipped with lube fittings on the driveshaft slip joint, which should be checked and lubricated at every oil change. CZPT technicians are well-versed in axles and can easily identify a bad U-joint based on the sound of acceleration or shifting. If not repaired properly, the drive shaft can fall off, requiring expensive repairs.
Oil filters and oil changes are other parts of a vehicle’s mechanical system. To prevent rust, the oil in these parts must be replaced. The same goes for transmission. Your vehicle’s driveshaft should be inspected at least every 60,000 miles. The vehicle’s transmission and clutch should also be checked for wear. Other components that should be checked include PCV valves, oil lines and connections, spark plugs, tire bearings, steering gearboxes and brakes.
If your vehicle has a manual transmission, it is best to have it serviced by CZPT’s East Lexington experts. These services should be performed every 2 to 4 years or every 24,000 miles. For best results, refer to the owner’s manual for recommended maintenance intervals. CZPT technicians are experienced in axles and differentials. Regular maintenance of your drivetrain will keep it in good working order.

China high quality Auto Creasing Rule Cutting Machine for Corrgated Dies Making (Die Board making)     with Good qualityChina high quality Auto Creasing Rule Cutting Machine for Corrgated Dies Making (Die Board making)     with Good quality

China factory Factory Price CZPT CNC Router CNC Machine 1325 for Sign Making with Free Design Custom

Product Description

factory price CZPT cnc router cnc machine 1325 for sign making 

Technical Specification:
 

1325CNC ROUTER
Model ZD1325
Range of work 1300x2500mm
Platform size 1380*2750
X,Y,Z structure Z screw,X,Y rack
Empty line speed 80000mm/min
Speed of work 25000mm/min
Precise ≤0.05mm
Repeat position accuracy ≤0.02mm
Xihu (West Lake) Dis. ZheJiang TBI25 square track
Spindle HQD9KW air cooled tool change spindle
Perating mode Kane 1500 watt high power pure servo absolute drive motor
Working voltage 380V/50hz
Tool 12tools
Operating system ZheJiang Kai Endi processsing center dedicated control system
Control system Syntec/NC studio/LNC system 
Pushing system Automatic processing after processing
Table Vaccum table
Tool setting system High precision automatic tool setting instrument

Function: Cutting, drilling, grooving, engraving and routing. Consecutive process make a maximize production efficiency.
Advantage:
        
1. Automatic work table cleaning, lubrication and knife device, which bring a high efficiency 
          2. Module design. Several knife modules are available.
          3. Professional appearance and structure design and high precision CNC processing
          4. Domestic and imported CNC system, which has a stable performance.
          5. Operate easily and only a simple training is needed
          6. Automatic knife changing device is available

Product Details:

Our Services:

(1) Pre-sale services:

* Provide the free consultation of the equipment .

* Provide the standard device and the flow chart.

* According to the clients’ special requirement, offering the reasonable plan and free design helping to

select the equipment.

* Welcome to visit our factory.

 

(2)Services during the sales:

* Inspect the machine before leaving the factory.

* Oversea install and debug the equipment.

* Train the first-line operator.

 

(3)After sale services:

* 24 hours online service.

* Provide the VIDEO with Install and debug the equipment.

* Provide technical exchanging

Our company:

   

 
 

 

How to Replace the Drive Shaft

Several different functions in a vehicle are critical to its functioning, but the driveshaft is probably the part that needs to be understood the most. A damaged or damaged driveshaft can damage many other auto parts. This article will explain how this component works and some of the signs that it may need repair. This article is for the average person who wants to fix their car on their own but may not be familiar with mechanical repairs or even driveshaft mechanics. You can click the link below for more information.
air-compressor

Repair damaged driveshafts

If you own a car, you should know that the driveshaft is an integral part of the vehicle’s driveline. They ensure efficient transmission of power from the engine to the wheels and drive. However, if your driveshaft is damaged or cracked, your vehicle will not function properly. To keep your car safe and running at peak efficiency, you should have it repaired as soon as possible. Here are some simple steps to replace the drive shaft.
First, diagnose the cause of the drive shaft damage. If your car is making unusual noises, the driveshaft may be damaged. This is because worn bushings and bearings support the drive shaft. Therefore, the rotation of the drive shaft is affected. The noise will be squeaks, dings or rattles. Once the problem has been diagnosed, it is time to repair the damaged drive shaft.
Professionals can repair your driveshaft at relatively low cost. Costs vary depending on the type of drive shaft and its condition. Axle repairs can range from $300 to $1,000. Labor is usually only around $200. A simple repair can cost between $150 and $1700. You’ll save hundreds of dollars if you’re able to fix the problem yourself. You may need to spend a few more hours educating yourself about the problem before handing it over to a professional for proper diagnosis and repair.
The cost of repairing a damaged driveshaft varies by model and manufacturer. It can cost as much as $2,000 depending on parts and labor. While labor costs can vary, parts and labor are typically around $70. On average, a damaged driveshaft repair costs between $400 and $600. However, these parts can be more expensive than that. If you don’t want to spend money on unnecessarily expensive repairs, you may need to pay a little more.
air-compressor

Learn how drive shafts work

While a car engine may be 1 of the most complex components in your vehicle, the driveshaft has an equally important job. The driveshaft transmits the power of the engine to the wheels, turning the wheels and making the vehicle move. Driveshaft torque refers to the force associated with rotational motion. Drive shafts must be able to withstand extreme conditions or they may break. Driveshafts are not designed to bend, so understanding how they work is critical to the proper functioning of the vehicle.
The drive shaft includes many components. The CV connector is 1 of them. This is the last stop before the wheels spin. CV joints are also known as “doughnut” joints. The CV joint helps balance the load on the driveshaft, the final stop between the engine and the final drive assembly. Finally, the axle is a single rotating shaft that transmits power from the final drive assembly to the wheels.
Different types of drive shafts have different numbers of joints. They transmit torque from the engine to the wheels and must accommodate differences in length and angle. The drive shaft of a front-wheel drive vehicle usually includes a connecting shaft, an inner constant velocity joint and an outer fixed joint. They also have anti-lock system rings and torsional dampers to help them run smoothly. This guide will help you understand the basics of driveshafts and keep your car in good shape.
The CV joint is the heart of the driveshaft, it enables the wheels of the car to move at a constant speed. The connector also helps transmit power efficiently. You can learn more about CV joint driveshafts by looking at the top 3 driveshaft questions
The U-joint on the intermediate shaft may be worn or damaged. Small deviations in these joints can cause slight vibrations and wobble. Over time, these vibrations can wear out drivetrain components, including U-joints and differential seals. Additional wear on the center support bearing is also expected. If your driveshaft is leaking oil, the next step is to check your transmission.
The drive shaft is an important part of the car. They transmit power from the engine to the transmission. They also connect the axles and CV joints. When these components are in good condition, they transmit power to the wheels. If you find them loose or stuck, it can cause the vehicle to bounce. To ensure proper torque transfer, your car needs to stay on the road. While rough roads are normal, bumps and bumps are common.
air-compressor

Common signs of damaged driveshafts

If your vehicle vibrates heavily underneath, you may be dealing with a faulty propshaft. This issue limits your overall control of the vehicle and cannot be ignored. If you hear this noise frequently, the problem may be the cause and should be diagnosed as soon as possible. Here are some common symptoms of a damaged driveshaft. If you experience this noise while driving, you should have your vehicle inspected by a mechanic.
A clanging sound can also be 1 of the signs of a damaged driveshaft. A ding may be a sign of a faulty U-joint or center bearing. This can also be a symptom of worn center bearings. To keep your vehicle safe and functioning properly, it is best to have your driveshaft inspected by a certified mechanic. This can prevent serious damage to your car.
A worn drive shaft can cause difficulty turning, which can be a major safety issue. Fortunately, there are many ways to tell if your driveshaft needs service. The first thing you can do is check the u-joint itself. If it moves too much or too little in any direction, it probably means your driveshaft is faulty. Also, rust on the bearing cap seals may indicate a faulty drive shaft.
The next time your car rattles, it might be time for a mechanic to check it out. Whether your vehicle has a manual or automatic transmission, the driveshaft plays an important role in your vehicle’s performance. When 1 or both driveshafts fail, it can make the vehicle unsafe or impossible to drive. Therefore, you should have your car inspected by a mechanic as soon as possible to prevent further problems.
Your vehicle should also be regularly lubricated with grease and chain to prevent corrosion. This will prevent grease from escaping and causing dirt and grease to build up. Another common sign is a dirty driveshaft. Make sure your phone is free of debris and in good condition. Finally, make sure the driveshaft chain and cover are in place. In most cases, if you notice any of these common symptoms, your vehicle’s driveshaft should be replaced.
Other signs of a damaged driveshaft include uneven wheel rotation, difficulty turning the car, and increased drag when trying to turn. A worn U-joint also inhibits the ability of the steering wheel to turn, making it more difficult to turn. Another sign of a faulty driveshaft is the shuddering noise the car makes when accelerating. Vehicles with damaged driveshafts should be inspected as soon as possible to avoid costly repairs.

China factory Factory Price CZPT CNC Router CNC Machine 1325 for Sign Making     with Free Design CustomChina factory Factory Price CZPT CNC Router CNC Machine 1325 for Sign Making     with Free Design Custom

China best 2017 New Design Jumbo Roll Kraft Paper Making Machine for Waste Paper Recycling with Hot selling

Product Description

2017 New Design Jumbo Roll Kraft Paper Making Machine For Waste Paper Recycling

Technical Parameter
 

Output paper Kraft paper , container board paper
Raw material Waste paper, Waste paper carton
Net paper width 1500-1700mm
Gram 80-160g/m2
Center gauge 2400mm
Designed speed 80m/min
Working speed 30-60m/min
Capacity 5-6T/D
Drive AC frequency speed, section drive
Arrange mode left and right hand machine
Density of wire 0.33-0.4%
Paper dryness of wire part 15-18%
Paper dryness of press part 30-38%
Dryness of finish paper 95%

Main Structure

  • Cylinder CZPT part
  • Pressure Part
  • Dryer Part
  • Reel paper part
  • Two roll calender
  • Rewinding paper machine
  • Driving & control part

All The Equipments
 

No. Name Qty
1 1575mmdouble-dryer and three-cylinder CZPT paper machine 1
2 Dryer exhausted hood 1
3 Φ700mm axial flow fan 1
4 Type-15 roots vacuum pump 1
5 1575mm reel machine 1
6 1575mm calender machine 1
7 1575 rewinding machine 1
8 Motor and Frequency convertor 1

Company Information 
 

HangZhou City Shunfu Paper Making Machinery Co., Ltd.

  • Founded in 1988, HangZhou City Shunfu Paper Making Machinery Co., Ltd. is a professional paper machine manufacturer who specialized in manufacturing and exporting paper machine over the past 30 years. 
  • Our products have passed Quality system ISO9001:2000 and exported more than 30 countries, Russia, India, Nigeria, Syria, Pakistan, Egept, Middle East, Africa, and South America etc. Our high quality and perfect service have reserved consumer’s praise and more orders.

What We Have

  • China Leading Paper Making And Processing Technology
  • Super High Quality
  • Competitive Price
  • Best service in overseas
  • Fast Delivery
  • 8 Years’ Export Experience
  • Excellent Sale and After-sale Service
  • OEM Available

Related Products We Offer 

FAQ

1.Why choose Shunfu?                                                                             

  • Founded in 1988, is a mature brand in china with 30 years experience of manufacturing various kinds of paper machine. 
  • our machine is running well in more than 30 countries, can match all the CE standard or more strict standard.
  • We have professional team with rich experience of paper mill design .you only need to tell us your open land dimension, we will make the future paper mill design for you.
  • In time delivery.

2. What is your payment term?                                                    

  • Usually, our payment term is 30% after signing contract, 70% before shipment.
  • We can also accept L/C, Western Union;
  • Payment term can be negotiated.

3. Could your engineer teach and train our worker and stay in our factory for long time?

  • Yes, we have installation engineer team, they can train and teach your worker to operate paper machine, during which their salary is paid by you.

4. Can I visit your company?                                                               

  • Yes, you can. Our company located in HangZhou city of ZheJiang province, if you take plane, it will need about 2 hours from HangZhou city, we will pick you up from airport as well as the train station. We will take you to see our machine running in our chinese clients’ paper mill. welcome you and your team to visit us at any time!

If you want to know more information, please contact me!

 

Drive shaft type

The driveshaft transfers torque from the engine to the wheels and is responsible for the smooth running of the vehicle. Its design had to compensate for differences in length and angle. It must also ensure perfect synchronization between its joints. The drive shaft should be made of high-grade materials to achieve the best balance of stiffness and elasticity. There are 3 main types of drive shafts. These include: end yokes, tube yokes and tapered shafts.
air-compressor

tube yoke

Tube yokes are shaft assemblies that use metallic materials as the main structural component. The yoke includes a uniform, substantially uniform wall thickness, a first end and an axially extending second end. The first diameter of the drive shaft is greater than the second diameter, and the yoke further includes a pair of opposing lugs extending from the second end. These lugs have holes at the ends for attaching the axle to the vehicle.
By retrofitting the driveshaft tube end into a tube fork with seat. This valve seat transmits torque to the driveshaft tube. The fillet weld 28 enhances the torque transfer capability of the tube yoke. The yoke is usually made of aluminum alloy or metal material. It is also used to connect the drive shaft to the yoke. Various designs are possible.
The QU40866 tube yoke is used with an external snap ring type universal joint. It has a cup diameter of 1-3/16″ and an overall width of 4½”. U-bolt kits are another option. It has threaded legs and locks to help secure the yoke to the drive shaft. Some performance cars and off-road vehicles use U-bolts. Yokes must be machined to accept U-bolts, and U-bolt kits are often the preferred accessory.
The end yoke is the mechanical part that connects the drive shaft to the stub shaft. These yokes are usually designed for specific drivetrain components and can be customized to your needs. Pat’s drivetrain offers OEM replacement and custom flanged yokes.
If your tractor uses PTO components, the cross and bearing kit is the perfect tool to make the connection. Additionally, cross and bearing kits help you match the correct yoke to the shaft. When choosing a yoke, be sure to measure the outside diameter of the U-joint cap and the inside diameter of the yoke ears. After taking the measurements, consult the cross and bearing identification drawings to make sure they match.
While tube yokes are usually easy to replace, the best results come from a qualified machine shop. Dedicated driveshaft specialists can assemble and balance finished driveshafts. If you are unsure of a particular aspect, please refer to the TM3000 Driveshaft and Cardan Joint Service Manual for more information. You can also consult an excerpt from the TSB3510 manual for information on angle, vibration and runout.
The sliding fork is another important part of the drive shaft. It can bend over rough terrain, allowing the U-joint to keep spinning in tougher conditions. If the slip yoke fails, you will not be able to drive and will clang. You need to replace it as soon as possible to avoid any dangerous driving conditions. So if you notice any dings, be sure to check the yoke.
If you detect any vibrations, the drivetrain may need adjustment. It’s a simple process. First, rotate the driveshaft until you find the correct alignment between the tube yoke and the sliding yoke of the rear differential. If there is no noticeable vibration, you can wait for a while to resolve the problem. Keep in mind that it may be convenient to postpone repairs temporarily, but it may cause bigger problems later.
air-compressor

end yoke

If your driveshaft requires a new end yoke, CZPT has several drivetrain options. Our automotive end yoke inventory includes keyed and non-keyed options. If you need tapered or straight holes, we can also make them for you.
A U-bolt is an industrial fastener that has U-shaped threads on its legs. They are often used to join 2 heads back to back. These are convenient options to help keep drivetrain components in place when driving over rough terrain, and are generally compatible with a variety of models. U-bolts require a specially machined yoke to accept them, so be sure to order the correct size.
The sliding fork helps transfer power from the transfer case to the driveshaft. They slide in and out of the transfer case, allowing the u-joint to rotate. Sliding yokes or “slips” can be purchased separately. Whether you need a new 1 or just a few components to upgrade your driveshaft, 4 CZPT Parts will have the parts you need to repair your vehicle.
The end yoke is a necessary part of the drive shaft. It connects the drive train and the mating flange. They are also used in auxiliary power equipment. CZPT’s drivetrains are stocked with a variety of flanged yokes for OEM applications and custom builds. You can also find flanged yokes for constant velocity joints in our extensive inventory. If you don’t want to modify your existing drivetrain, we can even make a custom yoke for you.

China best 2017 New Design Jumbo Roll Kraft Paper Making Machine for Waste Paper Recycling     with Hot sellingChina best 2017 New Design Jumbo Roll Kraft Paper Making Machine for Waste Paper Recycling     with Hot selling

China Good quality Fully Automatic LDPE HDPE Polythene PA CZPT Corner Bottom / Plow Bottom / Folded Bottom Pouch Bag Making Machine with Servo-Drive System for Coffee Nuts with Hot selling

Product Description

 

SPECIFICATION
 

Center Lap Seal Pouch / Bag Making Machine Serious

Equipment Center Lap Seal 350 Center Lap Seal 450 Center Lap Seal 600
Model HD-350BTZ HD-450BTZ HD-600BTZ
Max. Unwinding Width(mm) 850 1050 1200
Max. Pouch Width(mm) 350 450 600
Min. Pouch Height(mm) 50
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-200  Depends on specific condition of machine operating and material

 

Center Lap & Fin Pouch / Bag Making Machine Serious

Equipment Center Lap & Fin Seal
350
Center Lap & Fin Seal
450
Center Lap & Fin Seal
600
Model HD-350BTQZ HD-450BTQZ HD-600BTQZ
Max. Unwinding Width(mm) 850 1050 1200
Max. Pouch Width(mm) 350 450 600
Min. Pouch Height(mm) 50
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-200  Depends on specific condition of machine operating and material

 

Center Seal Stand-Up Pouch / Bag Machine Serious

Equipment Center Lap & Fin Seal 450 Center Seal & Stand-up 600
Model HD-450BTZMML HD-600BTZMML
Max. Unwinding Width(mm) 1050 1200
Max. Pouch Width(mm) 450 600
Min. Pouch Height(mm) 30
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

 

3-Side Seal Pouch / Bag Making Machine Serious

Equipment 3-Side Seal 600
Model HD-600BU
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 30
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 200  Depends on specific condition of machine operating and material

 

3-Side Seal & Stand-Up Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up 600
Model HD-600BUML
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

3-Side Seal & Stand-Up Plus Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up Plus 600
Model HD-600BULL
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

 

3-Side Seal & Stand-Up Ultra Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up
Ultra 850
3-Side Seal & Stand-Up
Ultra 1100
3-Side Seal & Stand-Up
Ultra 1250
Model HD-850BU HD-1100BU HD-1250BU
Max. Unwinding Width(mm) 1500 Single Unwiding 1100 Double Unwiding 1250 Double Unwiding
Max. Pouch Width(mm) 850 1100 1250
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-180  Depends on specific condition of machine operating and material

 

Flat Bottom Pouch / Bag Making Machine Serious

Equipment Flat Bottom 600
Model HD-600BF
Max. Unwinding Width(mm) 1200
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 90-110  Depends on specific condition of machine operating and material

As a technology-based company with independent R&D and manufacturing capabilities, Tie Min’s founding team already has extensive experience in the flexible packaging industry more earlier before its establishement in 2001, which makes Tie Min can design and produce the bag / pouch machine from the perspective of customers – we came from the customers, and we are going back to the customers, we know flexible packaging industry better, so can make pouch / bag making machine right.After more than 20 years of continuous development in the industry, Tie Min has accumulated a wealth of experience in designing, technical and economic evaluation, manufacturing, installation, commissioning, staff training, and after-sales service, and have been striving to create lasting relationships with customers all over the world, guarantee that they can count on us for CZPT pricing and quality with zero hassle, which is based on a complete set of production and testing equipment, a perfect managment of supply chain, as well as a group of highly qualified professional technicians of designing, construction, and manufacturing.
Tie Min Machine is dedicated to helping customers get the most right solutions of flexible packaging. 
Let us know what we can do for your business by leaving us a message. We’re here to make sure you don’t have to worry about anything.
Features:  · PLC Controlled Pneumatic Locking Unwinding System integrated with extra EPC to achieve more precise control and more stable feeding – Pouch Making Speed and Yield Rate Guaranteed · Multiple Photoelectric Sensors and Mechanical Limits are applied to the material with and without printing to achieve production with different materials in just 1 machine – Early Investment Minimized · CRT Touch Screen with  Remote Diagnostic and Restoration Function, plus a full set of manual CZPT and mature after-sales service -Convenience of machine operation guaranteed · Multiple auto-running functions available, such as Auto counting, Hole Punching/ Length Measuring / Sealing Speed Setting, making it possible for multiple machines controlled by just 1 man – Labour Cost Minimized · Mature Warning and Auto Stop System avoid loss caused by Temperature Lossing, Abnormal Unwinding and Feeding, Photoelectric Sensor and Servo Motor Going Down, etc. to Minimize Material Waste – Production costs Minimized FAQ Q:Are you factory or trading company? A:We are an original FACTORY specializing in designing, manufacturing, and customizing pouch bag making machines for over 20 years, we sincerely and warmly welcome all kinds of clients including the end customers, dealers, and sole agencies discuss with us about all forms of cooperation. Q:Where is your factory located? A:We are located in HangZhou City, 2 hours from ZheJiang by train or car, and 3 hours from HangZhou by air. Q: What kind of pouch bags can your machine make? A:The regular machine types we are selling can produce varieties of laminated pouches/bags,  including but not limited to the following bag types: 2-Side seal pouch bag, 3-Side seal pouch bag, 4-Side seal pouch bag; Lap seal pouch bag, Fin seal pouch bag; Side gusset pouch bag, Bottom gusset pouch bag; Center seal pouch bag, Side seal pouch bag, Bottom seal pouch bag; Flat bottom pouch bag / Plough bottom pouch bag; K Seal pouch bag / Skirt seal pouch bag; Round bottom pouch bag / Doyen bag / Doypack; Corner bottom pouch bag / Plow bottom pouch bag/ Folded bottom pouch bag. We will be very glad to discuss with our clients if they have any special demand for packing solutions, providing them with varieties of customization. Q: What kinds of pouch bag material are available for your machine? A: Our machines can produce laminated pouch bags made with varieties of material, including Aluminum and Plastic like PET, BOPET, OPP, BOPP, LDPE, HDPE, PA, and so on, any special demands of material will be welcome to be discussed with us, we will be glad to help our customers to get the right packing solutions. Q:What’s your after-sale service policy? A:6 months warranty for electronic components + 12 months warranty for mechanical parts. On-site installation and adjustment or remote guidance via the internet Employee technical training Repair and Technical Support Q: What certification do you have? A: With the cooperation of a responsible production management team and an experienced technical team, we have obtained ISO9001 certification from UKAS and CE certification from SGS, and have independently developed more than 30 patents in the past 20 years.

How to Replace the Drive Shaft

Several different functions in a vehicle are critical to its functioning, but the driveshaft is probably the part that needs to be understood the most. A damaged or damaged driveshaft can damage many other auto parts. This article will explain how this component works and some of the signs that it may need repair. This article is for the average person who wants to fix their car on their own but may not be familiar with mechanical repairs or even driveshaft mechanics. You can click the link below for more information.
air-compressor

Repair damaged driveshafts

If you own a car, you should know that the driveshaft is an integral part of the vehicle’s driveline. They ensure efficient transmission of power from the engine to the wheels and drive. However, if your driveshaft is damaged or cracked, your vehicle will not function properly. To keep your car safe and running at peak efficiency, you should have it repaired as soon as possible. Here are some simple steps to replace the drive shaft.
First, diagnose the cause of the drive shaft damage. If your car is making unusual noises, the driveshaft may be damaged. This is because worn bushings and bearings support the drive shaft. Therefore, the rotation of the drive shaft is affected. The noise will be squeaks, dings or rattles. Once the problem has been diagnosed, it is time to repair the damaged drive shaft.
Professionals can repair your driveshaft at relatively low cost. Costs vary depending on the type of drive shaft and its condition. Axle repairs can range from $300 to $1,000. Labor is usually only around $200. A simple repair can cost between $150 and $1700. You’ll save hundreds of dollars if you’re able to fix the problem yourself. You may need to spend a few more hours educating yourself about the problem before handing it over to a professional for proper diagnosis and repair.
The cost of repairing a damaged driveshaft varies by model and manufacturer. It can cost as much as $2,000 depending on parts and labor. While labor costs can vary, parts and labor are typically around $70. On average, a damaged driveshaft repair costs between $400 and $600. However, these parts can be more expensive than that. If you don’t want to spend money on unnecessarily expensive repairs, you may need to pay a little more.
air-compressor

Learn how drive shafts work

While a car engine may be 1 of the most complex components in your vehicle, the driveshaft has an equally important job. The driveshaft transmits the power of the engine to the wheels, turning the wheels and making the vehicle move. Driveshaft torque refers to the force associated with rotational motion. Drive shafts must be able to withstand extreme conditions or they may break. Driveshafts are not designed to bend, so understanding how they work is critical to the proper functioning of the vehicle.
The drive shaft includes many components. The CV connector is 1 of them. This is the last stop before the wheels spin. CV joints are also known as “doughnut” joints. The CV joint helps balance the load on the driveshaft, the final stop between the engine and the final drive assembly. Finally, the axle is a single rotating shaft that transmits power from the final drive assembly to the wheels.
Different types of drive shafts have different numbers of joints. They transmit torque from the engine to the wheels and must accommodate differences in length and angle. The drive shaft of a front-wheel drive vehicle usually includes a connecting shaft, an inner constant velocity joint and an outer fixed joint. They also have anti-lock system rings and torsional dampers to help them run smoothly. This guide will help you understand the basics of driveshafts and keep your car in good shape.
The CV joint is the heart of the driveshaft, it enables the wheels of the car to move at a constant speed. The connector also helps transmit power efficiently. You can learn more about CV joint driveshafts by looking at the top 3 driveshaft questions
The U-joint on the intermediate shaft may be worn or damaged. Small deviations in these joints can cause slight vibrations and wobble. Over time, these vibrations can wear out drivetrain components, including U-joints and differential seals. Additional wear on the center support bearing is also expected. If your driveshaft is leaking oil, the next step is to check your transmission.
The drive shaft is an important part of the car. They transmit power from the engine to the transmission. They also connect the axles and CV joints. When these components are in good condition, they transmit power to the wheels. If you find them loose or stuck, it can cause the vehicle to bounce. To ensure proper torque transfer, your car needs to stay on the road. While rough roads are normal, bumps and bumps are common.
air-compressor

Common signs of damaged driveshafts

If your vehicle vibrates heavily underneath, you may be dealing with a faulty propshaft. This issue limits your overall control of the vehicle and cannot be ignored. If you hear this noise frequently, the problem may be the cause and should be diagnosed as soon as possible. Here are some common symptoms of a damaged driveshaft. If you experience this noise while driving, you should have your vehicle inspected by a mechanic.
A clanging sound can also be 1 of the signs of a damaged driveshaft. A ding may be a sign of a faulty U-joint or center bearing. This can also be a symptom of worn center bearings. To keep your vehicle safe and functioning properly, it is best to have your driveshaft inspected by a certified mechanic. This can prevent serious damage to your car.
A worn drive shaft can cause difficulty turning, which can be a major safety issue. Fortunately, there are many ways to tell if your driveshaft needs service. The first thing you can do is check the u-joint itself. If it moves too much or too little in any direction, it probably means your driveshaft is faulty. Also, rust on the bearing cap seals may indicate a faulty drive shaft.
The next time your car rattles, it might be time for a mechanic to check it out. Whether your vehicle has a manual or automatic transmission, the driveshaft plays an important role in your vehicle’s performance. When 1 or both driveshafts fail, it can make the vehicle unsafe or impossible to drive. Therefore, you should have your car inspected by a mechanic as soon as possible to prevent further problems.
Your vehicle should also be regularly lubricated with grease and chain to prevent corrosion. This will prevent grease from escaping and causing dirt and grease to build up. Another common sign is a dirty driveshaft. Make sure your phone is free of debris and in good condition. Finally, make sure the driveshaft chain and cover are in place. In most cases, if you notice any of these common symptoms, your vehicle’s driveshaft should be replaced.
Other signs of a damaged driveshaft include uneven wheel rotation, difficulty turning the car, and increased drag when trying to turn. A worn U-joint also inhibits the ability of the steering wheel to turn, making it more difficult to turn. Another sign of a faulty driveshaft is the shuddering noise the car makes when accelerating. Vehicles with damaged driveshafts should be inspected as soon as possible to avoid costly repairs.

China Good quality Fully Automatic LDPE HDPE Polythene PA CZPT Corner Bottom / Plow Bottom / Folded Bottom Pouch Bag Making Machine with Servo-Drive System for Coffee Nuts     with Hot sellingChina Good quality Fully Automatic LDPE HDPE Polythene PA CZPT Corner Bottom / Plow Bottom / Folded Bottom Pouch Bag Making Machine with Servo-Drive System for Coffee Nuts     with Hot selling

China Standard Auto Steel blade Cutter Machine for Die Making with Free Design Custom

Product Description

Auto Cutter Machine for Die Making

Technical Parameters         Blade thickness(mm)
0.71 (VK_QX_A) 1.07(VK_QX_B)
Blade height(mm) 23-24mm 23-24mm
Maximum feeding speed 30m/min
Feeding Accuracy 0.03/300mm
Bridge Mode
  1. Automatic continuous Die Punch bridge, bridge height adjustable(15-18mm)Width(5-10mm) Gear Motor drive
Cutting Mode
  1. Automatic Die Punch cut(Automatic identification alarm and self Monitor)Gear Motor Driven Full Power
Rule Cassettes
  1. 2 Standard resistance -free rule cassettes
Function/Advantages
  1. Connect to the computer of automatic bender  machine without manual operation
  2. Intelligent cutting line program differential lengths of creasing line can be intelligently calculated according to differential over lap patterns,it is more convenience and time saving without manual operation. One key select lines by colour or layers.  Automatically break off and shrink.
  3. Cut the arc line.
  4. Multi tasks :several groups of Creasing Lines can be finished simultaneously with high speed and Bridging and cutting can be done at same times,as well as Bending Rules with Auto bender machine
Best Files format DXF,DWG,AL,CDR,PLT
Weight 230kg Size 1660*1150*1540
Power 110V 220V/50HZ 60HZ  500W
Air Pressure 0.6-0.8Mpa
Warranty 12 Month Mother Board Life Long Warranty

Traning service
Training: The training is free of charge.You just meed to pay for the around tickets,food and hotel.The whole training will cost 7 days.
 

  1. We will dispatch our technician to your company to install the machine and train your technicians, The whole training lessons are including the machine and software.
  2.  More ever we can Train You how to install the machine by Team viewer under our Engineers who is good at English and the machine.

 
Customized content
A.product range
Flat&rotary die board,cutting rules,creasing rules,creasing matrix,anvil cover,doctor blade,manual die making machine,auto-bender machine.
sample making machine,nick grinder,trash-cleaning machine,folding gluer machine and so on. We are the general agent of Spanish polycut anvil cover and American Trupoint doctor blade in China.
B.our advantages
1.we are factory providing die making whole parts.
2.MOQ or NO MOQ
3.Delivery 7-30 days on time
4.Top quality guaranteed by skilled workers,managing system and status of facilities.
5.Advanced equipment.such as laser cutting machine,automatic bender machine.Sample making machine.etc.
6.Customized size and spec/OEM available
7.Near HangZhou and ZheJiang .convenient transpotation
8.With famous Grandcorp Brand and new YT brand
9.The general agent of Spanish polycut anvil cover and American Trupoint doctor blade in China
C.Better service
1.QC system 100% inspection before shipment
3.Packing standard package/pallet or container/As per customized

The picture for you reference 
                          

>>> Package & Shipping
Each machine is well packed with export standard wooden box.
We will make photos for the machine before the shipping and let you know the processing of the packing and loading.

>>> Our Services
1. Our machine is guaranteed for 1 year, not including normal consuming parts.
2. 24 hour technical support by email or calling -137-1262-4566.
3. User-friendly English manual and Video CD for machine using and maintaining.
4. Our self-developed English software can do all kinds of pattern recognition.
5. We supply 1 year warranty and 5 years engineering service.

>>> Please Let Us Know
1.what machine do you need?
2.what materials will be processed? The size and thickness?
3.what is your business scope? Are you end user or distributor?

Any more product information, please contact us !  Customer Needs is my Pursuit !

How to Identify a Faulty Drive Shaft

The most common problems associated with automotive driveshafts include clicking and rubbing noises. While driving, the noise from the driver’s seat is often noticeable. An experienced auto mechanic can easily identify whether the sound is coming from both sides or from 1 side. If you notice any of these signs, it’s time to send your car in for a proper diagnosis. Here’s a guide to determining if your car’s driveshaft is faulty:
air-compressor

Symptoms of Driveshaft Failure

If you’re having trouble turning your car, it’s time to check your vehicle’s driveshaft. A bad driveshaft can limit the overall control of your car, and you should fix it as soon as possible to avoid further problems. Other symptoms of a propshaft failure include strange noises from under the vehicle and difficulty shifting gears. Squeaking from under the vehicle is another sign of a faulty driveshaft.
If your driveshaft fails, your car will stop. Although the engine will still run, the wheels will not turn. You may hear strange noises from under the vehicle, but this is a rare symptom of a propshaft failure. However, you will have plenty of time to fix the problem. If you don’t hear any noise, the problem is not affecting your vehicle’s ability to move.
The most obvious signs of a driveshaft failure are dull sounds, squeaks or vibrations. If the drive shaft is unbalanced, it is likely to damage the transmission. It will require a trailer to remove it from your vehicle. Apart from that, it can also affect your car’s performance and require repairs. So if you hear these signs in your car, be sure to have it checked by a mechanic right away.

Drive shaft assembly

When designing a propshaft, the design should be based on the torque required to drive the vehicle. When this torque is too high, it can cause irreversible failure of the drive shaft. Therefore, a good drive shaft design should have a long service life. Here are some tips to help you design a good driveshaft. Some of the main components of the driveshaft are listed below.
Snap Ring: The snap ring is a removable part that secures the bearing cup assembly in the yoke cross hole. It also has a groove for locating the snap ring. Spline: A spline is a patented tubular machined element with a series of ridges that fit into the grooves of the mating piece. The bearing cup assembly consists of a shaft and end fittings.
U-joint: U-joint is required due to the angular displacement between the T-shaped housing and the pinion. This angle is especially large in raised 4x4s. The design of the U-joint must guarantee a constant rotational speed. Proper driveshaft design must account for the difference in angular velocity between the shafts. The T-bracket and output shaft are attached to the bearing caps at both ends.
air-compressor

U-joint

Your vehicle has a set of U-joints on the driveshaft. If your vehicle needs to be replaced, you can do it yourself. You will need a hammer, ratchet and socket. In order to remove the U-joint, you must first remove the bearing cup. In some cases you will need to use a hammer to remove the bearing cup, you should be careful as you don’t want to damage the drive shaft. If you cannot remove the bearing cup, you can also use a vise to press it out.
There are 2 types of U-joints. One is held by a yoke and the other is held by a c-clamp. A full ring is safer and ideal for vehicles that are often used off-road. In some cases, a full circle can be used to repair a c-clamp u-joint.
In addition to excessive torque, extreme loads and improper lubrication are common causes of U-joint failure. The U-joint on the driveshaft can also be damaged if the engine is modified. If you are driving a vehicle with a heavily modified engine, it is not enough to replace the OE U-joint. In this case, it is important to take the time to properly lubricate these components as needed to keep them functional.

tube yoke

QU40866 Tube Yoke is a common replacement for damaged or damaged driveshaft tubes. They are desirably made of a metallic material, such as an aluminum alloy, and include a hollow portion with a lug structure at 1 end. Tube yokes can be manufactured using a variety of methods, including casting and forging. A common method involves drawing solid elements and machining them into the final shape. The resulting components are less expensive to produce, especially when compared to other forms.
The tube fork has a connection point to the driveshaft tube. The lug structure provides attachment points for the gimbal. Typically, the driveshaft tube is 5 inches in diameter and the lug structure is 4 inches in diameter. The lug structure also serves as a mounting point for the drive shaft. Once installed, Tube Yoke is easy to maintain. There are 2 types of lug structures: 1 is forged tube yoke and the other is welded.
Heavy-duty series drive shafts use bearing plates to secure the yoke to the U-joint. All other dimensions are secured with external snap rings. Yokes are usually machined to accept U-bolts. For some applications, grease fittings are used. This attachment is more suitable for off-road vehicles and performance vehicles.
air-compressor

end yoke

The end yoke of the drive shaft is an integral part of the drive train. Choosing a high-quality end yoke will help ensure long-term operation and prevent premature failure. Pat’s Driveline offers a complete line of automotive end yokes for power take-offs, differentials and auxiliary equipment. They can also measure your existing parts and provide you with high quality replacements.
A U-bolt is an industrial fastener with threaded legs. When used on a driveshaft, it provides greater stability in unstable terrain. You can purchase a U-bolt kit to secure the pinion carrier to the drive shaft. U-bolts also come with lock washers and nuts. Performance cars and off-road vehicles often use this type of attachment. But before you install it, you have to make sure the yoke is machined to accept it.
End yokes can be made of aluminum or steel and are designed to provide strength. It also offers special bolt styles for various applications. CZPT’s drivetrain is also stocked with a full line of automotive flange yokes. The company also produces custom flanged yokes for many popular brands. Since the company has a comprehensive line of replacement flange yokes, it can help you transform your drivetrain from non-serviceable to serviceable.

bushing

The first step in repairing or replacing an automotive driveshaft is to replace worn or damaged bushings. These bushings are located inside the drive shaft to provide a smooth, safe ride. The shaft rotates in a rubber sleeve. If a bushing needs to be replaced, you should first check the manual for recommendations. Some of these components may also need to be replaced, such as the clutch or swingarm.

China Standard Auto Steel blade Cutter Machine for Die Making     with Free Design CustomChina Standard Auto Steel blade Cutter Machine for Die Making     with Free Design Custom