Tag Archives: machine

China factory Automatic Piston Drive Viscous Liquid Food Peanut Butter Hand Sanitizer Making Edible Coconut Oil Packing Filling Machine near me supplier

Product Description

Automatic piston drive viscous liquid peanut butter hand sanitizer making edible coconut oil packing filling machine

This liquid filling machine is a high-tech filling equipment controlled by microcomputer PLC programmable, and equipped with photo electricity instruction and pneumatic action.
It adopts servo control system, ensure the pistons can always reach constant position. When close to target filling capacity, the filling speed will automatically slow down, which can prevent the liquid spill out bottle mouth and cause pollution.

It is widely used in the below industry:
Plant oil:Lubricant oil, engine oil, gear oil, etc.
Daily Chemical products:Liquid soap,toilet cleaner, laundry detergent, kitchen detergent, fabric softener, hand sanitizer, alcohol gel, shampoo, hair lotion, body soap, etc.

Food industry:Tomato paste, chocolate butter, honey, edible cooking oil, mayonnaise, ketchup, jam, yogurt, etc.
Cosmetic:toner, lotion, cream, body milk, etc.

Our filling machine is easy to adjust, when you want to change the filling bottle size, just need to adjust the lifting rod, change the space between the filling nozzles and adjust the parameters on the touch screen.

Advantages
Suitable for material: daily chemical viscosity materials. 
1.Accurate measurement: adopt servo control system, ensure the piston can always reaches constant position 
2. Variable speed filling: in filling process, when close to target filling capacity can be applied to realize speed slow filling, prevent the liquid spill bottle mouth cause pollution 
3. Convenient adjustment: replacement filling specifications only in touch screen can be changed in parameters, and all filling first change in position, fine-tuning dose it in touch screen adjustment Adopt servo motor to descend 
4. Selecting the international famous brand electrical components configuration. CZPT Japan PLC computer, omron photoelectric, ZheJiang is produced touch screen, ensure the quality of its outstanding with long-term performance.

Technical parameters

Model

WJ-01

WJ-02

WJ-03

WJ-04

WJ-05

WJ-06

WJ-07

Filling Head(PC)

2

4

6

8

10

12

14

Suitable volume(L)

0.5-6

0.5-6

0.5-6

0.5-6

0.5-6

0.5-6

0.5-6

Productivity (bph)

350-500

700-1000

1000-1500

1500-2200

1800-2500

2000-3000

3000-4000

Work Pressure (MPa)

0.6-0.7

0.6-0.7

0.6-0.7

0.6-0.7

0.6-0.7

0.6-0.7

0.6-0.7

Power consumption(KW)

1.0

1.1

1.5

1.5

1.5

2.0

2.0

Electrical components of our filling machine

  ITEM SUPPLIER Brand
1 Touch screen ZheJiang WEINVEIW
2 PLC Japan Mitsubishi
3 Photo sensor for bottles Japan OPTEX
4 solenoid valve ZheJiang SHAKO
5 Level button Mexico JOHNSON CONTROLS
6 angle seat Valve Jointed BURKERT
7 Diving cylinder ZheJiang AIRTAC
8 Power button France Schneider
9 Button France Schneider
10 frequency converter France Schneider
11 Magnetic switch ZheJiang AIRTAC
12 oil-water separator ZheJiang SHAKO
13 Speed reducer China Jiao xing
14 Relay Japan Omron
15 Servo motor Japan Panasonic

Relevant machine to recommend
Corrosive liquid filling machine:suitable for disinfectant, bleach, etc.

Non viscous liquid filling machine:suitable for 70% alcohol liquid, grease remover, air freshner, vinegar, coconut oil, liquid fertilizer, etc.

PET bottle blowing machine:suitable for producing PET hand sanitizer bottle, kitchen detergent bottle, edible oil bottle, cosmetic tonner, lotion bottle, etc.

PE bottle extrusion blow molding machine:suitable for producing PE bottles for detergent, washing liquid, disinfectant, shampoo, etc.

Our service

Customized service
We can design the machines according your requirements(material,power,filling type,the kinds of the bottles,and so on),at the same time we will give you our professional suggestion,as you know,we have been in this industry for many years.

After-sales service
1.We will delivery the machine and provide the bill of load on time to make sure you can get the machine quickly 
2.When you finish the Preparation conditions,our fast and professional aftersales service engineer team will go to your factory to install the machine,give you the operating manual,and train your employee until they can operate the machine well. 
3.We often ask feedback and offer help to our customer whose machine have been used in their factory for some time. 
4.We provide 1 year warranty 
5.Well-trained & experienced staff are to answer all your inquiries in English and Chinese
6.24 hours for engineer response (all services part 5days in customer hand by Intl’ courier). 
7.12 Months guarantee and life-long technical support.
8.Your business relationship with us will be confidential to any third party. 
9.Good after-sale service offered, please get back to us if you got any questions.

HangZhou Proman Machine Co. Ltd,is a production manufacturer and exporter specialized in water treatment plants,beverage filling machine, packing machine, bottle blowing machine, injection moulding machine and spare parts of filling line.
Our factory was established in the year of 1998, with the long history of accumulated experience in filling machine industry in south ZheJiang . There are many development engineers of filling machine in our company. We devote ourselves to the development, research and production of liquid food and beverage packing and filling industry.

Besides, we have our own designs for the bottles.
 
Proman Machine cooperated with many customers in recent years, we win the trust of customers from our high-quality products. And we are looking forward to the future cooperation with you if our products can impress you deeply!

FAQ

1.Where is your factory?

Our Factory is located in HangZhou City, 2 hours drive from ZheJiang  and 1 hour drive from HangZhou(airplane & high-speed rail). If you arrive at ZheJiang or HangZhou, we can pick you up to visit our factory. 

2.Do you have any technical supports with your Beverage Filling Machines?
Yes, We have a professional team of engineers who owned many installation, debug and training experiences abroad, are available to service machinery overseas. 

3.What’s your guarantee or the warranty of the quality if we buy your machines?

We offer high quality machines with 1 year warranty and supply life-long technical support. 
You’re always welcome to visit our company. If you have any interest on our products. Please do not hesitate to contact us.

 

 

What is a driveshaft and how much does it cost to replace one?

Your vehicle is made up of many moving parts. Knowing each part is important because a damaged driveshaft can seriously damage other parts of the car. You may not know how important your driveshaft is, but it’s important to know if you want to fix your car. In this article, we’ll discuss what a driveshaft is, what its symptoms are, and how much it costs to replace a driveshaft.
air-compressor

Repair damaged driveshafts

A damaged driveshaft does not allow you to turn the wheels freely. It also exposes your vehicle to higher repair costs due to damaged driveshafts. If the drive shaft breaks while the car is in motion, it may cause a crash. Also, it can significantly affect the performance of the car. If you don’t fix the problem right away, you could risk more expensive repairs. If you suspect that the drive shaft is damaged, do the following.
First, make sure the drive shaft is protected from dust, moisture, and dust. A proper driveshaft cover will prevent grease from accumulating in the driveshaft, reducing the chance of further damage. The grease will also cushion the metal-to-metal contact in the constant velocity joints. For example, hitting a soft material is better than hitting a metal wall. A damaged prop shaft can not only cause difficult cornering, but it can also cause the vehicle to vibrate, which can further damage the rest of the drivetrain.
If the driveshaft is damaged, you can choose to fix it yourself or take it to a mechanic. Typically, driveshaft repairs cost around $200 to $300. Parts and labor may vary based on your vehicle type and type of repair. These parts can cost up to $600. However, if you don’t have a mechanical background, it’s better to leave it to a professional.
If you notice that 1 of the 2 drive shafts is worn, it’s time to repair it. Worn bushings and bearings can cause the drive shaft to vibrate unnecessarily, causing it to break and cause further damage. You can also check the center bearing if there is any play in the bearing. If these symptoms occur, it is best to take your car to a mechanic as soon as possible.
air-compressor

Learn about U-joints

While most vehicles have at least 1 type of U-joint, there are other types available. CV joints (also known as hot rod joints) are used in a variety of applications. The minor axis is shorter than the major axis on which the U-joint is located. In both cases, the U-joints are lubricated at the factory. During servicing, the drive shaft slip joint should be lubricated.
There are 2 main styles of U-joints, including forged and press fit. They are usually held in place by C-clamps. Some of these U-joints have knurls or grooves. When selecting the correct fitting, be sure to measure the entire fitting. To make sure you get the correct size, you can use the size chart or check the manual for your specific model.
In addition to lubrication, the condition of the U-joint should be checked regularly. Lubricate them regularly to avoid premature failure. If you hear a clicking sound when shifting gears, the u-joint space may be misaligned. In this case, the bearing may need to be serviced. If there is insufficient grease in the bearings, the universal joint may need to be replaced.
U-joint is an important part of the automobile transmission shaft. Without them, your car would have no wheeled suspension. Without them, your vehicle will have a rickety front end and a wobbly rear end. Because cars can’t drive on ultra-flat surfaces, they need flexible driveshafts. The U-joint compensates for this by allowing it to move up and down with the suspension.
A proper inspection will determine if your u-joints are loose or worn. It should be easy to pull them out. Make sure not to pull them all the way out. Also, the bearing caps should not move. Any signs of roughness or wear would indicate a need for a new UJ. Also, it is important to note that worn UJs cannot be repaired.

Symptoms of Driveshaft Failure

One of the most common problems associated with a faulty driveshaft is difficulty turning the wheels. This severely limits your overall control over the vehicle. Fortunately, there are several symptoms that could indicate that your driveshaft is failing. You should take immediate steps to determine the cause of the problem. One of the most common causes of driveshaft failure is a weak or faulty reverse gear. Other common causes of driveshaft damage include driving too hard, getting stuck in reverse gear and differential lock.
Another sign of a failed driveshaft is unusual noise while driving. These noises are usually the result of wear on the bushings and bearings that support the drive shaft. They can also cause your car to screech or scratch when switching from drive to idle. Depending on the speed, the noise may be accompanied by vibration. When this happens, it’s time to send your vehicle in for a driveshaft replacement.
One of the most common symptoms of driveshaft failure is noticeable jitter when accelerating. This could be a sign of a loose U-joint or worn center bearing. You should thoroughly inspect your car to determine the cause of these sounds and corresponding symptoms. A certified mechanic can help you determine the cause of the noise. A damaged propshaft can severely limit the drivability of the vehicle.
Regular inspection of the drive shaft can prevent serious damage. Depending on the damage, you can replace the driveshaft for anywhere from $500 to $1,000. Depending on the severity of the damage and the level of repair, the cost will depend on the number of parts that need to be replaced. Do not drive with a bad driveshaft as it can cause a serious crash. There are several ways to avoid this problem entirely.
The first symptom to look for is a worn U-joint. If the U-joint comes loose or moves too much when trying to turn the steering wheel, the driveshaft is faulty. If you see visible rust on the bearing cap seals, you can take your car to a mechanic for a thorough inspection. A worn u-joint can also indicate a problem with the transmission.
air-compressor

The cost of replacing the drive shaft

Depending on your state and service center, a driveshaft repair can cost as little as $300 or as high as $2,000, depending on the specifics of your car. Labor costs are usually around $70. Prices for the parts themselves range from $400 to $600. Labor costs also vary by model and vehicle make. Ultimately, the decision to repair or replace the driveshaft will depend on whether you need a quick car repair or a full car repair.
Some cars have 2 separate driveshafts. One goes to the front and the other goes to the back. If your car has 4 wheel drive, you will have two. If you’re replacing the axles of an all-wheel-drive car, you’ll need a special part for each axle. Choosing the wrong 1 can result in more expensive repairs. Before you start shopping, you should know exactly how much it will cost.
Depending on the type of vehicle you own, a driveshaft replacement will cost between PS250 and PS500. Luxury cars can cost as much as PS400. However, for safety and the overall performance of the car, replacing the driveshaft may be a necessary repair. The cost of replacing a driveshaft depends on how long your car has been on the road and how much wear and tear it has experienced. There are some symptoms that indicate a faulty drive shaft and you should take immediate action.
Repairs can be expensive, so it’s best to hire a mechanic with experience in the field. You’ll be spending hundreds of dollars a month, but you’ll have peace of mind knowing the job will be done right. Remember that you may want to ask a friend or family member to help you. Depending on the make and model of your car, replacing the driveshaft is more expensive than replacing the parts and doing it yourself.
If you suspect that your drive shaft is damaged, be sure to fix it as soon as possible. It is not advisable to drive a car with abnormal vibration and sound for a long time. Fortunately, there are some quick ways to fix the problem and avoid costly repairs later. If you’ve noticed the symptoms above, it’s worth getting the job done. There are many signs that your driveshaft may need service, including lack of power or difficulty moving the vehicle.

China factory Automatic Piston Drive Viscous Liquid Food Peanut Butter Hand Sanitizer Making Edible Coconut Oil Packing Filling Machine   near me supplier China factory Automatic Piston Drive Viscous Liquid Food Peanut Butter Hand Sanitizer Making Edible Coconut Oil Packing Filling Machine   near me supplier

China Standard Fully Automatic CZ Steel All-in-One Machine Hydraulic Drive One-Key Type Changing Roller Keel Machine with Free Design Custom

Product Description

Product Description

CZ purlin roll forming machine 

CZ purlin roll forming machine is used for making machines for purlins ,which will be used as the frame of big factory or bulidings .Material for purlins is galvanized steel coil strip ,coil thickness is 1.2-2.5mm ,some customers also use 3.0mm thickness ,base is 80-300mm ,height is 40-80mm

 

Working flow

The whole line includes 6 parts altogether ,
Decoiler –Feeding table –Roll forming machine body–Computer control system –Cutting blade –Finished panel –Run out table
 

Product Parameters

NO 

Item

Specification 

 

Material   

Raw material 

GI 

Material thickness

1.2-2.5MM

 

 

 

 

Machine 

Roller stations

18

Shaft 

Solid ,90mm

Shaft material 

45# steel with  Cr12 chromed ,

Roller material 

High grade 45# steel with Cr12 quenched 

Middle plate thickness

20mm

Machine size

9.5*1.2*1.8m

Productivity 

8-20m/min

 

Cutter 

Material 

Cr12 

Method 

Hydraulic cutting 

 

 

 

Power 

Driving way 

Chain 2.0 inch

Motor 

22KW

Hydraulic motor 

18.5KW

Voltage

380V ,50HZ ,3 Phase or as your request 

 

 

 

Control system 

 

PLC 

Delta from ZheJiang  

Invertor 

Delta

Screen 

Touch screen ,Delta

Encoder 

Omron from Japan 

Language

Chinese ,English or as your need 

Detailed Photos

 

This is the machine used for CZ purlin forming machine to make purlins Material: GI Thickness: 0.3-0.6mm Motor: 4KW Hydraulic Oil Pump: 4KW Roller Material: 45# Steel Shaft Material: 45# Steel Normal Speed: 20m/min Fast: 30 -60m/min We can customize the machine according to your requirements

 

Company Profile

 

 

HangZhouNGTONGTAI MACHINERY CO.,LTD 

HangZhou HangZhoungtongtai Machinery Co.,ltd is a leading manufacturer for steel plate coiling
machinery,cold-bending & rolling steel plate shaping machineries and automatic production lines.The products are mainly used in steel structure industry for producing C&Z type purlin,colored wall and floor protecting steel plate, thermal insulating plate and
load-bearing plate of buildings, and other complementary thin wall cold-bending shaped steelplates,expresswayrailings,colorfuldecorating and protecting steel plates for high-grade steel stucture residendces.

Certifications

Main market

 
Our company’s products are produced and sold in various places, and exported to Thailand, India, Pakistan, Palestine, Bahrain,Kyrgyzstan, Lebanon, Sri Lanka, Indonesia, Bosnia and Herzegovina, Russia, Croatia, Haiti, Brazil, Argentina, Chile, Algeria,Guinea, Tanzania, New Kas Rydonia, Papua New Guinea, United Kingdom, United States, Canada, Poland and other countries

FAQ
Q1. What’s your payment terms and delivery time?

A1: 30% as the deposit by T/T in advance, 70% as the balance payment by T/T after
your inspect the machine well and before delivery. Of course your payment terms are acceptable. After we get down payment, we will
arrange production. About 30-45 days for delivery.
Q2. Do you have after-sales support?
A2: Yes, we are happy to provide advice and we also have skilled technicians available across the world.
Q3. Do you sell only standard machines?
A3: No, most of our machines are built according to customers specifications, using top brand components.
Q4. What will you do if the machine is broken?
A4: We provide 18 months free warranty and free technical support for the whole life of any machine. If the broken parts can’t repair, we can send the new parts replace the broken parts freely, but you need pay the express cost by yourself. If it is beyond the warranty period, we can negotiate to solve the problem, and we supply the technical support for the whole life of the
equipment.
Q5. Can you be responsible for transport?
A5: Yes, please tell me the destination port or address. we have rich experience in transporting.
Q6. How to visit your company?
A6: 1) Fly to ZheJiang airport, By high speed train From ZheJiang Nan to HangZhou Xi (1 hour). 2) Fly to ZheJiang Airport: By high speed train From ZheJiang Xihu (West Lake) Dis.ao to HangZhou Xi(4.5 hours), then we can pick up you.

 

 

How to Select a Worm Shaft and Gear For Your Project

You will learn about axial pitch PX and tooth parameters for a Worm Shaft 20 and Gear 22. Detailed information on these 2 components will help you select a suitable Worm Shaft. Read on to learn more….and get your hands on the most advanced gearbox ever created! Here are some tips for selecting a Worm Shaft and Gear for your project!…and a few things to keep in mind.
worm shaft

Gear 22

The tooth profile of Gear 22 on Worm Shaft 20 differs from that of a conventional gear. This is because the teeth of Gear 22 are concave, allowing for better interaction with the threads of the worm shaft 20. The worm’s lead angle causes the worm to self-lock, preventing reverse motion. However, this self-locking mechanism is not entirely dependable. Worm gears are used in numerous industrial applications, from elevators to fishing reels and automotive power steering.
The new gear is installed on a shaft that is secured in an oil seal. To install a new gear, you first need to remove the old gear. Next, you need to unscrew the 2 bolts that hold the gear onto the shaft. Next, you should remove the bearing carrier from the output shaft. Once the worm gear is removed, you need to unscrew the retaining ring. After that, install the bearing cones and the shaft spacer. Make sure that the shaft is tightened properly, but do not over-tighten the plug.
To prevent premature failures, use the right lubricant for the type of worm gear. A high viscosity oil is required for the sliding action of worm gears. In two-thirds of applications, lubricants were insufficient. If the worm is lightly loaded, a low-viscosity oil may be sufficient. Otherwise, a high-viscosity oil is necessary to keep the worm gears in good condition.
Another option is to vary the number of teeth around the gear 22 to reduce the output shaft’s speed. This can be done by setting a specific ratio (for example, 5 or 10 times the motor’s speed) and modifying the worm’s dedendum accordingly. This process will reduce the output shaft’s speed to the desired level. The worm’s dedendum should be adapted to the desired axial pitch.

Worm Shaft 20

When selecting a worm gear, consider the following things to consider. These are high-performance, low-noise gears. They are durable, low-temperature, and long-lasting. Worm gears are widely used in numerous industries and have numerous benefits. Listed below are just some of their benefits. Read on for more information. Worm gears can be difficult to maintain, but with proper maintenance, they can be very reliable.
The worm shaft is configured to be supported in a frame 24. The size of the frame 24 is determined by the center distance between the worm shaft 20 and the output shaft 16. The worm shaft and gear 22 may not come in contact or interfere with 1 another if they are not configured properly. For these reasons, proper assembly is essential. However, if the worm shaft 20 is not properly installed, the assembly will not function.
Another important consideration is the worm material. Some worm gears have brass wheels, which may cause corrosion in the worm. In addition, sulfur-phosphorous EP gear oil activates on the brass wheel. These materials can cause significant loss of load surface. Worm gears should be installed with high-quality lubricant to prevent these problems. There is also a need to choose a material that is high-viscosity and has low friction.
Speed reducers can include many different worm shafts, and each speed reducer will require different ratios. In this case, the speed reducer manufacturer can provide different worm shafts with different thread patterns. The different thread patterns will correspond to different gear ratios. Regardless of the gear ratio, each worm shaft is manufactured from a blank with the desired thread. It will not be difficult to find 1 that fits your needs.
worm shaft

Gear 22’s axial pitch PX

The axial pitch of a worm gear is calculated by using the nominal center distance and the Addendum Factor, a constant. The Center Distance is the distance from the center of the gear to the worm wheel. The worm wheel pitch is also called the worm pitch. Both the dimension and the pitch diameter are taken into consideration when calculating the axial pitch PX for a Gear 22.
The axial pitch, or lead angle, of a worm gear determines how effective it is. The higher the lead angle, the less efficient the gear. Lead angles are directly related to the worm gear’s load capacity. In particular, the angle of the lead is proportional to the length of the stress area on the worm wheel teeth. A worm gear’s load capacity is directly proportional to the amount of root bending stress introduced by cantilever action. A worm with a lead angle of g is almost identical to a helical gear with a helix angle of 90 deg.
In the present invention, an improved method of manufacturing worm shafts is described. The method entails determining the desired axial pitch PX for each reduction ratio and frame size. The axial pitch is established by a method of manufacturing a worm shaft that has a thread that corresponds to the desired gear ratio. A gear is a rotating assembly of parts that are made up of teeth and a worm.
In addition to the axial pitch, a worm gear’s shaft can also be made from different materials. The material used for the gear’s worms is an important consideration in its selection. Worm gears are usually made of steel, which is stronger and corrosion-resistant than other materials. They also require lubrication and may have ground teeth to reduce friction. In addition, worm gears are often quieter than other gears.

Gear 22’s tooth parameters

A study of Gear 22’s tooth parameters revealed that the worm shaft’s deflection depends on various factors. The parameters of the worm gear were varied to account for the worm gear size, pressure angle, and size factor. In addition, the number of worm threads was changed. These parameters are varied based on the ISO/TS 14521 reference gear. This study validates the developed numerical calculation model using experimental results from Lutz and FEM calculations of worm gear shafts.
Using the results from the Lutz test, we can obtain the deflection of the worm shaft using the calculation method of ISO/TS 14521 and DIN 3996. The calculation of the bending diameter of a worm shaft according to the formulas given in AGMA 6022 and DIN 3996 show a good correlation with test results. However, the calculation of the worm shaft using the root diameter of the worm uses a different parameter to calculate the equivalent bending diameter.
The bending stiffness of a worm shaft is calculated through a finite element model (FEM). Using a FEM simulation, the deflection of a worm shaft can be calculated from its toothing parameters. The deflection can be considered for a complete gearbox system as stiffness of the worm toothing is considered. And finally, based on this study, a correction factor is developed.
For an ideal worm gear, the number of thread starts is proportional to the size of the worm. The worm’s diameter and toothing factor are calculated from Equation 9, which is a formula for the worm gear’s root inertia. The distance between the main axes and the worm shaft is determined by Equation 14.
worm shaft

Gear 22’s deflection

To study the effect of toothing parameters on the deflection of a worm shaft, we used a finite element method. The parameters considered are tooth height, pressure angle, size factor, and number of worm threads. Each of these parameters has a different influence on worm shaft bending. Table 1 shows the parameter variations for a reference gear (Gear 22) and a different toothing model. The worm gear size and number of threads determine the deflection of the worm shaft.
The calculation method of ISO/TS 14521 is based on the boundary conditions of the Lutz test setup. This method calculates the deflection of the worm shaft using the finite element method. The experimentally measured shafts were compared to the simulation results. The test results and the correction factor were compared to verify that the calculated deflection is comparable to the measured deflection.
The FEM analysis indicates the effect of tooth parameters on worm shaft bending. Gear 22’s deflection on Worm Shaft can be explained by the ratio of tooth force to mass. The ratio of worm tooth force to mass determines the torque. The ratio between the 2 parameters is the rotational speed. The ratio of worm gear tooth forces to worm shaft mass determines the deflection of worm gears. The deflection of a worm gear has an impact on worm shaft bending capacity, efficiency, and NVH. The continuous development of power density has been achieved through advancements in bronze materials, lubricants, and manufacturing quality.
The main axes of moment of inertia are indicated with the letters A-N. The three-dimensional graphs are identical for the seven-threaded and one-threaded worms. The diagrams also show the axial profiles of each gear. In addition, the main axes of moment of inertia are indicated by a white cross.

China Standard Fully Automatic CZ Steel All-in-One Machine Hydraulic Drive One-Key Type Changing Roller Keel Machine   with Free Design CustomChina Standard Fully Automatic CZ Steel All-in-One Machine Hydraulic Drive One-Key Type Changing Roller Keel Machine   with Free Design Custom

China Best Sales 6 Colour High Speed Belt Drive Paper Flexographic Printing Machine with Great quality

Product Description

I’v Never Believed I am the Best , But I will try to be the Best For you
                       HangZhou Xihu (West Lake) Dis. Plastic Packing Machinery Co.,LTD

We are manufacturer of Bag Machines, Film Blowing Machines and Flexo Printing Machines . 

For Flexo Printing Machines , we have Model -A and Model -B . Model -C  

Model A is traditional gears transmission . speed about 50 m/min . 
usually for , shopping bags, garbage bags or other simple products printing . 

Model B is helical gears transmission, better match gears .
Speed about 70-80m/min . 

Model C is belt gears transmission . less matching time than gears . So that can get HD image.
speed about 70-80 m/min , if run with chamber doctor blade, speed up to 100-110m/min . 
for higher capacity needed clients, and higher quality image products. 

If not sure , which kind you want to buy , you can show me your samples , and tell me your requires . 
For example , speed you want . what image you want to print  .what material you want to print . etc . 

 

 
Type  color Printing width
     (mm)
Printing length
     (mm)
The speed
    (m/min)
Thickness of plate
        (mm)
The dimension of machine
  L*W*H (m)
BH-2600 2 560 300-1200                Model A.50 m/min
Model B 80m/min 
Model C 90-120m/min .              
    2.28,1.7.3.4             2.3 * 1.6 * 2.2
BH-2800 760 2.3 * 1.8 * 2.2
BH-21000 960 2.3 * 2.0 * 2.2
BH-21200 1160 2.3 * 2.2 * 2.2
BH-4600 4 560  4.8 * 1.6 * 2.2
BH-4800 760 4.8 * 1.8 * 2.2
BH-41000 960 4.8 * 2.0 * 2.2
BH-41200 1160  4.8 * 2.2 * 2.2
BH-6600 6 560  4.8 * 1.6 * 2.6 
BH-6800 760 4.8 * 1.8 * 2.6
BH-61000 960 4.8 * 2.0 * 2.6
BH-61200 1160 4.8 * 2.2 * 2.6
BH-8600 8 560 5.5 * 1.6 * 3.0
BH-8800 760 5.5 * 1.8 * 3.0
BH-81000 960 5.5 * 2.0 * 3.0
BH-81200 1160 5.5 * 2.2 * 3.0

For example , those pictures are C model  8 Colors Flexo Printing Machines . 
—they are driven by Belt , lower noise and more precision . 
— Ceramic Rollers and Chamber doctor blade .
—–Speed Upto 110 m/min
—-suitable for printing Film , Paper Rollers .

      

   

Those pictures are A model Printing Machines 

—- Driven by Traditional Gears 
— Speed 50 m/min . 
— Print Film , paper , woven . 
— you can add single side doctor blades . 

      

 
Shipping & Packing :

Machines will Packed with Waterproof oil , stretch Film
If need , Fumigation wooden case as option
Delivery date: 35days after receipt of down payment.
Shipment from HangZhou port ,China By Sea

After Service :

Question: Are you Manufacture or Trading Company?   
Answer:We are printing machines, bag machine, film machines manufacturer nearly 10years, we had established our own trading company to expand our foreign market business, and provided our customer better service
Question: Where is your factory located? How can I visit there?  
Answer: Our factory is located in HangZhou City, ZHangZhoug province, China. The nearest air port is HangZhou airport, we can go HangZhou airport pick you.
             If you take train from ZheJiang to HangZhou city , only 5 hours, the station is HangZhou station .
 
Question: How does your factory do regarding quality control?
Answer: Most our machine mechanical parts are processed by ourselves. So we can better control our quality from beginning. Electrical Part we had cooperated with good foreign brand, such as ABB, Yaskawa, Siemens, Airtac, NSK, Delta, CZPT etc. And all our machine will do running test before shipping.
 
Question: Do you company provided foreign country machine installation services?
Answer: We have strong service team can provided all the machines buy from our company foreign country installation service and engineer training service. But buyer need provided the ticket, food, hotel cost etc.
 
Question: How your company provided after sales service?
Answer: All the machines buy from our company guarantee is 1 year (except any human mistake occurred) each machines we will give some spare parts free when shipping machines. Within guarantee machine parts damage, we will send to you free by express asap. If customer required engineer go to solve problem is possible.

SEND US “MESSAGE” TO LEARN MORE ABOUT MACHINES.

THANKS FOR YOUR READING , THE END

 

Lead Screws and Clamp Style Collars

If you have a lead screw, you’re probably interested in learning about the Acme thread on this type of shaft. You might also be interested in finding out about the Clamp style collars and Ball screw nut. But before you buy a new screw, make sure you understand what the terminology means. Here are some examples of screw shafts:

Acme thread

The standard ACME thread on a screw shaft is made of a metal that is resistant to corrosion and wear. It is used in a variety of applications. An Acme thread is available in a variety of sizes and styles. General purpose Acme threads are not designed to handle external radial loads and are supported by a shaft bearing and linear guide. Their design is intended to minimize the risk of flank wedging, which can cause friction forces and wear. The Centralizing Acme thread standard caters to applications without radial support and allows the thread to come into contact before its flanks are exposed to radial loads.
The ACME thread was first developed in 1894 for machine tools. While the acme lead screw is still the most popular screw in the US, European machines use the Trapezoidal Thread (Metric Acme). The acme thread is a stronger and more resilient alternative to square threads. It is also easier to cut than square threads and can be cut by using a single-point threading die.
Similarly to the internal threads, the metric versions of Acme are similar to their American counterparts. The only difference is that the metric threads are generally wider and are used more frequently in industrial settings. However, the metric-based screw threads are more common than their American counterparts worldwide. In addition, the Acme thread on screw shafts is used most often on external gears. But there is still a small minority of screw shafts that are made with a metric thread.
ACME screws provide a variety of advantages to users, including self-lubrication and reduced wear and tear. They are also ideal for vertical applications, where a reduced frictional force is required. In addition, ACME screws are highly resistant to back-drive and minimize the risk of backlash. Furthermore, they can be easily checked with readily available thread gauges. So, if you’re looking for a quality ACME screw for your next industrial project, look no further than ACME.
screwshaft

Lead screw coatings

The properties of lead screw materials affect their efficiency. These materials have high anti-corrosion, thermal resistance, and self-lubrication properties, which eliminates the need for lubrication. These coating materials include polytetrafluoroethylene (PFE), polyether ether ketone (PEK), and Vespel. Other desirable properties include high tensile strength, corrosion resistance, and rigidity.
The most common materials for lead screws are carbon steel, stainless steel, and aluminum. Lead screw coatings can be PTFE-based to withstand harsh environments and remove oil and grease. In addition to preventing corrosion, lead screw coatings improve the life of polymer parts. Lead screw assembly manufacturers offer a variety of customization options for their lead screw, including custom-molded nuts, thread forms, and nut bodies.
Lead screws are typically measured in rpm, or revolutions per minute. The PV curve represents the inverse relationship between contact surface pressure and sliding velocity. This value is affected by the material used in the construction of the screw, lubrication conditions, and end fixity. The critical speed of lead screws is determined by their length and minor diameter. End fixity refers to the support for the screw and affects its rigidity and critical speed.
The primary purpose of lead screws is to enable smooth movement. To achieve this, lead screws are usually preloaded with axial load, enabling consistent contact between a screw’s filets and nuts. Lead screws are often used in linear motion control systems and feature a large area of sliding contact between male and female threads. Lead screws can be manually operated or mortised and are available in a variety of sizes and materials. The materials used for lead screws include stainless steel and bronze, which are often protected by a PTFE type coating.
These screws are made of various materials, including stainless steel, bronze, and various plastics. They are also made to meet specific requirements for environmental conditions. In addition to lead screws, they can be made of stainless steel, aluminum, and carbon steel. Surface coatings can improve the screw’s corrosion resistance, while making it more wear resistant in tough environments. A screw that is coated with PTFE will maintain its anti-corrosion properties even in tough environments.
screwshaft

Clamp style collars

The screw shaft clamp style collar is a basic machine component, which is attached to the shaft via multiple screws. These collars act as mechanical stops, load bearing faces, or load transfer points. Their simple design makes them easy to install. This article will discuss the pros and cons of this style of collar. Let’s look at what you need to know before choosing a screw shaft clamp style collar. Here are some things to keep in mind.
Clamp-style shaft collars are a versatile mounting option for shafts. They have a recessed screw that fully engages the thread for secure locking. Screw shaft clamp collars come in different styles and can be used in both drive and power transmission applications. Listed below are the main differences between these 2 styles of collars. They are compatible with all types of shafts and are able to handle axial loads of up to 5500 pounds.
Clamp-style shaft collars are designed to prevent the screw from accidentally damaging the shaft when tightened. They can be tightened with a set screw to counteract the initial clamping force and prevent the shaft from coming loose. However, when tightening the screw, you should use a torque wrench. Using a set screw to tighten a screw shaft collar can cause it to warp and reduce the surface area that contacts the shaft.
Another key advantage to Clamp-style shaft collars is that they are easy to install. Clamp-style collars are available in one-piece and two-piece designs. These collars lock around the shaft and are easy to remove and install. They are ideal for virtually any shaft and can be installed without removing any components. This type of collar is also recommended for those who work on machines with sensitive components. However, be aware that the higher the OD, the more difficult it is to install and remove the collar.
Screw shaft clamp style collars are usually one-piece. A two-piece collar is easier to install than a one-piece one. The two-piece collars provide a more effective clamping force, as they use the full seating torque. Two-piece collars have the added benefit of being easy to install because they require no tools to install. You can disassemble one-piece collars before installing a two-piece collar.
screwshaft

Ball screw nut

The proper installation of a ball screw nut requires that the nut be installed on the center of the screw shaft. The return tubes of the ball nut must be oriented upward so that the ball nut will not overtravel. The adjusting nut must be tightened against a spacer or spring washer, then the nut is placed on the screw shaft. The nut should be rotated several times in both directions to ensure that it is centered.
Ball screw nuts are typically manufactured with a wide range of preloads. Large preloads are used to increase the rigidity of a ball screw assembly and prevent backlash, the lost motion caused by a clearance between the ball and nut. Using a large amount of preload can lead to excessive heat generation. The most common preload for ball screw nuts is 1 to 3%. This is usually more than enough to prevent backlash, but a higher preload will increase torque requirements.
The diameter of a ball screw is measured from its center, called the ball circle diameter. This diameter represents the distance a ball will travel during 1 rotation of the screw shaft. A smaller diameter means that there are fewer balls to carry the load. Larger leads mean longer travels per revolution and higher speeds. However, this type of screw cannot carry a greater load capacity. Increasing the length of the ball nut is not practical, due to manufacturing constraints.
The most important component of a ball screw is a ball bearing. This prevents excessive friction between the ball and the nut, which is common in lead-screw and nut combinations. Some ball screws feature preloaded balls, which avoid “wiggle” between the nut and the ball. This is particularly desirable in applications with rapidly changing loads. When this is not possible, the ball screw will experience significant backlash.
A ball screw nut can be either single or multiple circuits. Single or multiple-circuit ball nuts can be configured with 1 or 2 independent closed paths. Multi-circuit ball nuts have 2 or more circuits, making them more suitable for heavier loads. Depending on the application, a ball screw nut can be used for small clearance assemblies and compact sizes. In some cases, end caps and deflectors may be used to feed the balls back to their original position.

China Best Sales 6 Colour High Speed Belt Drive Paper Flexographic Printing Machine   with Great qualityChina Best Sales 6 Colour High Speed Belt Drive Paper Flexographic Printing Machine   with Great quality

China Professional Kitech Automatic Servo Drive Horizontal Premade Stand up Bag Packing Granule Food Dried Fruit Packaging Machine with Free Design Custom

Product Description

KITECH Automatic Servo Drive Horizontal Premade Stand Up Bag Packing Granule Food Dried Fruit Packaging Machine

1,Easy to operate,adopt advanced PLC from Germany Siemens, mate with touch screen and electric control system, the man-machine interface is friendly. 

2,Frequency conversion adjusts the speed: this machine uses frequency conversion equipment, can be adjusted within the range according to the needs of reality in production. 

3,Automatic checking: no pouch or pouch open error, no fill, no seal. the bag can be used again, avoid wasting packing materials and raw materials.

4,Safty device: Machine stop at abnormal air pressure, heater disconnection alarm. 

5,Use the plastic bearing, don’t need put on oil, less pollution. 

6,Use no oil vacuum pump, avoid polluting the environment in the production. 

7,huff,clamp the meatus of bag when put the windpipe into it, then huff to open up the bag fully to bottom in oder to avoid the material overflow from the bag if the it is not opend fully. 

8,The packing materials loss low, what this machine is used the preformed bag, the bag pattern is perfect and has a high quality of the sealing part, this improved the product specification 

9,Product or packing bag contact parts adopt stainless steel or other materials which accord with the food hygienic requirements, guarantee hygiene and security of the food. 

10,With different feeders changed to pack solid, liquid, thick liquid ,powder and so on. 

11,The packing bag suits in extensive range, suit for multi-layer compound, monolayer PE , PP and so on Preformed bag made by film and paper.

Technical Parameters

Machine model

KL-320CD

KL-420CD

KL-520CD

KL-620CD

KL-720CD

KL-820CD

KL-1050CD

Bag shape

Back sealing pillow bag/4-side sealing bag

Packing speed

25-80bags/min

Roll thickness

 

0.05-0.15mm

Max roll width

320mm

420mm

520mm

620mm

720mm

820mm

1050mm

Roll diameter 

 

320mm

320mm

320mm

320mm

320mm

320mm

320mm

Bag width

50-150mm

60-200mm

80-250mm

100-300mm

100-350mm

120-400mm

Max:520mm

Bag length

80-240mm

80-300mm

80-350mm

100-450mm

100-450mm

120-550mm

Max:750mm

Packing weight

Max:0.5kg

Max:1kg

Max:3kg

Max:4kg

Max:8kg

Max:10kg

Max:15kg

Voltage

220V

Power

2KW

2.2KW

3KW

3.4KW

3.6KW

3.8KW

6KW

Additional configuration

Nitrogen fiiling device   Coding printer     gas-filled device   punch device etc

Application&Bag type

Food:Candy,Beans,Chips,Popcorn,Pasta,Corn,Rice cake,Jelly,Cookies,Cheese,Peanuts,Coffee Creamer,Almond,etc.
Daily necessities:Mothballs,Disposable Mask,Buttons,etc.
Hard&Ware:O ring,Screw,Dowel,etc.
Medical:Pill,Medicine,etc.


FAQ

 

Make sample bags
If it’s necessary according to your requirements, we can make sample bags for your reference.
Free machine adjustment before shipment
Our technical team will adjust the machine based on customer’s request and take video to send to our customer to show the running condition of the machine.
Free Training CD to ship with machine
Our technical team will provide a trainning CD to our customer in order to train how to use the machine.
Life Long after sale service
Our factory will provide life long service, in order to help our customer to solve any problem regarding to the machine, such as replacement part, technique questions, etc.
Overseas door to door service
Our engineer overseas door to door service is available.
Warranty and after-sales service
One year warranty, 24 hours online technical service and solution can be offered.

Remark
1.Our company accept the payment of  L/C,D/A,D/P,T/T,Western Union,MoneyGram,Visa,Mastercard,
   e-checking,PayPay,apple pay etc,confirm with our sales personnel  finally please.
2.There may be charge when adding the additional configuration, please confirm with our sales personnel.
3.The packing machine final price need to confirm with our sales personnel.
4.Our company reserve all the right for the final explanation.

 

The Functions of Splined Shaft Bearings

Splined shafts are the most common types of bearings for machine tools. They are made of a wide variety of materials, including metals and non-metals such as Delrin and nylon. They are often fabricated to reduce deflection. The tooth profile will become deformed with time, as the shaft is used over a long period of time. Splined shafts are available in a huge range of materials and lengths.

Functions

Splined shafts are used in a variety of applications and industries. They are an effective anti-rotational device, as well as a reliable means of transmitting torque. Other types of shafts are available, including key shafts, but splines are the most convenient for transmitting torque. The following article discusses the functions of splines and why they are a superior choice. Listed below are a few examples of applications and industries in which splines are used.
Splined shafts can be of several styles, depending on the application and mechanical system in question. The differences between splined shaft styles include the design of teeth, overall strength, transfer of rotational concentricity, sliding ability, and misalignment tolerance. Listed below are a few examples of splines, as well as some of their benefits. The difference between these styles is not mutually exclusive; instead, each style has a distinct set of pros and cons.
A splined shaft is a cylindrical shaft with teeth or ridges that correspond to a specific angular position. This allows a shaft to transfer torque while maintaining angular correspondence between tracks. A splined shaft is defined as a cylindrical member with several grooves cut into its circumference. These grooves are equally spaced around the shaft and form a series of projecting keys. These features give the shaft a rounded appearance and allow it to fit perfectly into a grooved cylindrical member.
While the most common applications of splines are for shortening or extending shafts, they can also be used to secure mechanical assemblies. An “involute spline” spline has a groove that is wider than its counterparts. The result is that a splined shaft will resist separation during operation. They are an ideal choice for applications where deflection is an issue.
A spline shaft’s radial torsion load distribution is equally distributed, unless a bevel gear is used. The radial torsion load is evenly distributed and will not exert significant load concentration. If the spline couplings are not aligned correctly, the spline connection can fail quickly, causing significant fretting fatigue and wear. A couple of papers discuss this issue in more detail.
splineshaft

Types

There are many different types of splined shafts. Each type features an evenly spaced helix of grooves on its outer surface. These grooves are either parallel or involute. Their shape allows them to be paired with gears and interchange rotary and linear motion. Splines are often cold-rolled or cut. The latter has increased strength compared to cut spines. These types of shafts are commonly used in applications requiring high strength, accuracy, and smoothness.
Another difference between internal and external splined shafts lies in the manufacturing process. The former is made of wood, while the latter is made of steel or a metal alloy. The process of manufacturing splined shafts involves cutting furrows into the surface of the material. Both processes are expensive and require expert skill. The main advantage of splined shafts is their adaptability to a wide range of applications.
In general, splined shafts are used in machinery where the rotation is transferred to an internal splined member. This member can be a gear or some other rotary device. These types of shafts are often packaged together as a hub assembly. Cleaning and lubricating are essential to the life of these components. If you’re using them on a daily basis, you’ll want to make sure to regularly inspect them.
Crowned splines are usually involute. The teeth of these splines form a spiral pattern. They are used for smaller diameter shafts because they add strength. Involute splines are also used on instrument drives and valve shafts. Serration standards are found in the SAE. Both kinds of splines can also contain a ball bearing for high torque. The difference between the 2 types of splines is the number of teeth on the shaft.
Internal splines have many advantages over external ones. For example, an internal spline shaft can be made using a grinding wheel instead of a CNC machine. It also uses a more accurate and economical process. Furthermore, it allows for a shorter manufacturing cycle, which is essential when splining high-speed machines. In addition, it stabilizes the relative phase between the spline and thread.
splineshaft

Manufacturing methods

There are several methods used to fabricate a splined shaft. Key and splined shafts are constructed from 2 separate parts that are shaped in a synchronized manner to transfer torque uniformly. Hot rolling is 1 method, while cold rolling utilizes low temperatures to form metal. Both methods enhance mechanical properties, surface finishes, and precision. The advantage of cold rolling is its cost-effectiveness.
Cold forming is 1 method, as well as machining and assembling. Cold forming is a unique process that allows the spline to be shaped to the desired shape. The resulting shape provides maximum contact area and torsional strength. Standard splines are available in standard sizes, but custom lengths can also be ordered. CZPT offers various auxiliary equipment, such as mating sleeves and flanged bushings.
Cold forging is another method. This method produces long splined shafts that are used in automobile propellers. After the spline portion is cut out, it is worked on in a hobbing machine. Work hardening enhances the root strength of the splined portion. It can be used for bearings, gears, and other mechanical components. Listed below are the manufacturing methods for splined shafts.
Parallel splines are the simplest of the splined shaft manufacturing methods. Parallel splines are usually welded to shafts, while involute splines are made of metal or non-metals. Splines are available in a wide variety of lengths and materials. The process is usually accompanied by a process called milling. The workpiece rotates to produce the serrated surface.
Splines are internal or external grooves in a splined shaft. They work in combination with keyways to transfer torque. Male and female splines are used in gears. Female and male splines correspond to 1 another to ensure proper angular correspondence. Involute splines have more surface area and thus are stronger than external splines. Moreover, they help the shaft fit into a grooved cylindrical member without misalignment.
A variety of other methods of manufacturing a splined shaft can be used to produce a splined shaft. Spline shafts can be produced using broaching and shaping, 2 precision machining methods. Broaching uses a metal tool with successively larger teeth to remove metal and create ridges and holes in the surface of a material. However, this process is expensive and requires special expertise.
splineshaft

Applications

The splined shaft is a mechanical component with a helix-like shape formed by the equal spacing of grooves in a circular ring. The splines can either have parallel or involute sides. The splines minimize stress concentration in stationary joints and can be used in both rotary and linear motion. In some cases, splines are rolled rather than cut. The latter is more durable than cut splines and is often used in applications requiring high strength, accuracy, and smooth finish.
Splined shafts are commonly made of carbon steel. This alloy steel has a low carbon content, making it easy to work with. Carbon steel is a great choice for splines because it is malleable. Generally, high-quality carbon steel provides a consistent motion. Steel alloys are also available that contain nickel, chromium, copper, and other metals. If you’re unsure of the right material for your application, you can consult a spline chart.
Splines are a versatile mechanical component. They are easy to cut and fit. Splines can be internal or external, with teeth positioned at equal intervals on both sides of the shaft. This allows the shaft to engage with the hub around the entire circumference of the hub. It also increases load capacity by creating a constant multiple-tooth point of contact with the hub. For this reason, they’re used extensively in rotary and linear motion.
Splined shafts are used in a wide variety of industries. CZPT Inc. offers custom and standard splined shafts for a variety of applications. When choosing a splined shaft for a specific application, consider the surrounding mated components, torque requirements, and size requirements. These 3 factors will make it the ideal choice for your rotary equipment. And you’ll be pleased with the end result!
There are many types of splines and their applications are endless. They transfer torque and angular misalignment between parts, and they also enable the axial rotation of assembled components. Therefore, splines are an essential component of machinery and are used in a wide range of applications. This type of shaft can be found in various types of machines, from household appliances to industrial machinery. So, the next time you’re looking for a splined shaft, make sure you look for a splined one.

China Professional Kitech Automatic Servo Drive Horizontal Premade Stand up Bag Packing Granule Food Dried Fruit Packaging Machine   with Free Design CustomChina Professional Kitech Automatic Servo Drive Horizontal Premade Stand up Bag Packing Granule Food Dried Fruit Packaging Machine   with Free Design Custom

China Hot selling PPGI PPGL Chain Drive Pre-Cutting Automatic Galvanized Steel C/Z Purlin Roll Forming Machine Factory Price with ISO9001/Ce Certificate with Free Design Custom

Product Description

PPGI PPGL Chain Drive Pre-Cutting Automatic Galvanized Steel C/Z Purlin Roll Forming Machine Factory Price with ISO9001/Ce Certificate

Product Description

AUTO-Change type C To Z Purlin Machine for C80-300 & Z140-300 Profile

Profile Drawing

 

Pre-Punching Device

                            Main Machine

With feeding material guide, body frame made from H450 type steel by welding
Side wall thickness: Q235 t30mm ;Tie rod:ф22 Galvanized
Rollers manufactured from Gcr15/Cr12 steel,CNC lathes,Heat Treatment
with thickness 0.04mm,surface with mirror treatment
Shafts Diameter=ф90mm,precision machined
Gear/Sprocket driving,about 21-step to form(19-step to form and 3 step for final shaping).
Main Motor=18.5KW , Frequency speed control
Speed redcucer motor:K series;
Size changing motor:6pcs, Automatically controlled by PLC Programing.
All the screw bolts with grade 8.8
Real forming speed 20m/min (depending on the number of punching holes)

              Post Hydraulic Cutting Device

to cutting,Two pieces type of cutting blade design, no blanking
Hydraulic motor:7.5KW,with Hydrualic Pre-Cutting&Punching Device Share a hydraulic station ;
Cutting tool material: Cr12MoV
The cutting power is provided by the main engine hydraulic station
Plus our PATENTED hydraulic UNIVERSAL post-cutting device(NO NEED TO CHANGE cutting die for different size like traditional purlin machine), which make the cut profile looks better

 

PLC Control System
Control The Quantity And Cutting Length Automatically
Input The Production Data(Production Batch,pcs,Length,etc.)On The Touch Screen ,It Can Finish The Production Automatically.

Combined With PLC, Inverter, Touch Screen, Encoder, etc
PLC Siemens (German brand)/Schneider(French brand)
Inverter Siemens (German brand)/Schneider(French brand)
7-Inch Color Touch Screen Siemens (German brand)/Schneider(French brand)
Encoder Omron (Japan brand)Switch Bottom, Indicate Light, Power Supply, Intermediate Relay, AC Contactor
Thermal Relay Siemens(German brand)/Schneider(French brand)
Air Switch LG-LS(Korea brand)
Cut-to-Length Tolerance≤±1 mm
Control Voltage 24V

After-Sale Service
1. The warranty is 24 months after the client receives the machine.
Within The 24months, we will courier the replacement parts to the client free of charge
2.We offer technical support for the entire life of our machines
3. We can send our technicians to install and train the workers in the clients’ factories with extra cost

Terms Of Trade

Minimum order quantity (MOQ) 1 Set
Delivery time about 45 workdays
Port of loading port of HangZhou
Type of payment by T/T or by L/C
Export to more than 80 countries and regions, including South Korea,ZheJiang , UK, Ireland, Greece, Australia,
USA, Mexico, Brazil, Russia,Saudi Arabia, UAE, Iran , India, Singapore, Malaysia, Thailand,
Indonesia, Philippines, Vietnam, South Africa, Nigeria, Egypt, etc

Packing Style

Packing method Main body of machine is naked and covered by plastic film(to protect of dust and corrosion),
loaded into container and steadily fixed in container suitable by steel rope and lock, suitable for long-distance transportation.

 

View more products,click here…

Company Profile

 

What is a driveshaft and how much does it cost to replace one?

Your vehicle is made up of many moving parts. Knowing each part is important because a damaged driveshaft can seriously damage other parts of the car. You may not know how important your driveshaft is, but it’s important to know if you want to fix your car. In this article, we’ll discuss what a driveshaft is, what its symptoms are, and how much it costs to replace a driveshaft.
air-compressor

Repair damaged driveshafts

A damaged driveshaft does not allow you to turn the wheels freely. It also exposes your vehicle to higher repair costs due to damaged driveshafts. If the drive shaft breaks while the car is in motion, it may cause a crash. Also, it can significantly affect the performance of the car. If you don’t fix the problem right away, you could risk more expensive repairs. If you suspect that the drive shaft is damaged, do the following.
First, make sure the drive shaft is protected from dust, moisture, and dust. A proper driveshaft cover will prevent grease from accumulating in the driveshaft, reducing the chance of further damage. The grease will also cushion the metal-to-metal contact in the constant velocity joints. For example, hitting a soft material is better than hitting a metal wall. A damaged prop shaft can not only cause difficult cornering, but it can also cause the vehicle to vibrate, which can further damage the rest of the drivetrain.
If the driveshaft is damaged, you can choose to fix it yourself or take it to a mechanic. Typically, driveshaft repairs cost around $200 to $300. Parts and labor may vary based on your vehicle type and type of repair. These parts can cost up to $600. However, if you don’t have a mechanical background, it’s better to leave it to a professional.
If you notice that 1 of the 2 drive shafts is worn, it’s time to repair it. Worn bushings and bearings can cause the drive shaft to vibrate unnecessarily, causing it to break and cause further damage. You can also check the center bearing if there is any play in the bearing. If these symptoms occur, it is best to take your car to a mechanic as soon as possible.
air-compressor

Learn about U-joints

While most vehicles have at least 1 type of U-joint, there are other types available. CV joints (also known as hot rod joints) are used in a variety of applications. The minor axis is shorter than the major axis on which the U-joint is located. In both cases, the U-joints are lubricated at the factory. During servicing, the drive shaft slip joint should be lubricated.
There are 2 main styles of U-joints, including forged and press fit. They are usually held in place by C-clamps. Some of these U-joints have knurls or grooves. When selecting the correct fitting, be sure to measure the entire fitting. To make sure you get the correct size, you can use the size chart or check the manual for your specific model.
In addition to lubrication, the condition of the U-joint should be checked regularly. Lubricate them regularly to avoid premature failure. If you hear a clicking sound when shifting gears, the u-joint space may be misaligned. In this case, the bearing may need to be serviced. If there is insufficient grease in the bearings, the universal joint may need to be replaced.
U-joint is an important part of the automobile transmission shaft. Without them, your car would have no wheeled suspension. Without them, your vehicle will have a rickety front end and a wobbly rear end. Because cars can’t drive on ultra-flat surfaces, they need flexible driveshafts. The U-joint compensates for this by allowing it to move up and down with the suspension.
A proper inspection will determine if your u-joints are loose or worn. It should be easy to pull them out. Make sure not to pull them all the way out. Also, the bearing caps should not move. Any signs of roughness or wear would indicate a need for a new UJ. Also, it is important to note that worn UJs cannot be repaired.

Symptoms of Driveshaft Failure

One of the most common problems associated with a faulty driveshaft is difficulty turning the wheels. This severely limits your overall control over the vehicle. Fortunately, there are several symptoms that could indicate that your driveshaft is failing. You should take immediate steps to determine the cause of the problem. One of the most common causes of driveshaft failure is a weak or faulty reverse gear. Other common causes of driveshaft damage include driving too hard, getting stuck in reverse gear and differential lock.
Another sign of a failed driveshaft is unusual noise while driving. These noises are usually the result of wear on the bushings and bearings that support the drive shaft. They can also cause your car to screech or scratch when switching from drive to idle. Depending on the speed, the noise may be accompanied by vibration. When this happens, it’s time to send your vehicle in for a driveshaft replacement.
One of the most common symptoms of driveshaft failure is noticeable jitter when accelerating. This could be a sign of a loose U-joint or worn center bearing. You should thoroughly inspect your car to determine the cause of these sounds and corresponding symptoms. A certified mechanic can help you determine the cause of the noise. A damaged propshaft can severely limit the drivability of the vehicle.
Regular inspection of the drive shaft can prevent serious damage. Depending on the damage, you can replace the driveshaft for anywhere from $500 to $1,000. Depending on the severity of the damage and the level of repair, the cost will depend on the number of parts that need to be replaced. Do not drive with a bad driveshaft as it can cause a serious crash. There are several ways to avoid this problem entirely.
The first symptom to look for is a worn U-joint. If the U-joint comes loose or moves too much when trying to turn the steering wheel, the driveshaft is faulty. If you see visible rust on the bearing cap seals, you can take your car to a mechanic for a thorough inspection. A worn u-joint can also indicate a problem with the transmission.
air-compressor

The cost of replacing the drive shaft

Depending on your state and service center, a driveshaft repair can cost as little as $300 or as high as $2,000, depending on the specifics of your car. Labor costs are usually around $70. Prices for the parts themselves range from $400 to $600. Labor costs also vary by model and vehicle make. Ultimately, the decision to repair or replace the driveshaft will depend on whether you need a quick car repair or a full car repair.
Some cars have 2 separate driveshafts. One goes to the front and the other goes to the back. If your car has 4 wheel drive, you will have two. If you’re replacing the axles of an all-wheel-drive car, you’ll need a special part for each axle. Choosing the wrong 1 can result in more expensive repairs. Before you start shopping, you should know exactly how much it will cost.
Depending on the type of vehicle you own, a driveshaft replacement will cost between PS250 and PS500. Luxury cars can cost as much as PS400. However, for safety and the overall performance of the car, replacing the driveshaft may be a necessary repair. The cost of replacing a driveshaft depends on how long your car has been on the road and how much wear and tear it has experienced. There are some symptoms that indicate a faulty drive shaft and you should take immediate action.
Repairs can be expensive, so it’s best to hire a mechanic with experience in the field. You’ll be spending hundreds of dollars a month, but you’ll have peace of mind knowing the job will be done right. Remember that you may want to ask a friend or family member to help you. Depending on the make and model of your car, replacing the driveshaft is more expensive than replacing the parts and doing it yourself.
If you suspect that your drive shaft is damaged, be sure to fix it as soon as possible. It is not advisable to drive a car with abnormal vibration and sound for a long time. Fortunately, there are some quick ways to fix the problem and avoid costly repairs later. If you’ve noticed the symptoms above, it’s worth getting the job done. There are many signs that your driveshaft may need service, including lack of power or difficulty moving the vehicle.

China Hot selling PPGI PPGL Chain Drive Pre-Cutting Automatic Galvanized Steel C/Z Purlin Roll Forming Machine Factory Price with ISO9001/Ce Certificate   with Free Design CustomChina Hot selling PPGI PPGL Chain Drive Pre-Cutting Automatic Galvanized Steel C/Z Purlin Roll Forming Machine Factory Price with ISO9001/Ce Certificate   with Free Design Custom

China high quality Hot High Speed Stacking Gear Drive 4 Color T-Shirt Plastic Bag Flexo Printing Machine for Sale Price near me manufacturer

Product Description

Main Parameter
 

items describe
Maximum paper width 1050mm
Maximum printing width 1000mm
Registration Precision 0.1mm
Printing repeat 300-600mm
Maximum unwinding dia 1500mm
Maximum rewinding dia 1500mm
Unwinding type Air shaft
Rewinding type Surface tension
Gear format 5mm per tooth
The speed 150-200m/min
The thickness of plate 2.28mm
The thickness of tape 0.38mm
Suitable materials Paper cup, paper box etc
The color of machine Grey and white
Operation language Chinese
Air comsuption 6KG, 0.6L/Min clear,dry,no water/oil AIR
Voltage required 380 VAC +/-10%   3PH  50HZ
Dry type Electric heating,Heating power27KW
Total power 102kw
Dimension 7600*2700*3400mm

 

Samples reference
 

Certifications

ISO &CE certification
 

Win-win cooperation with clients

Container loading

 

FAQ

Q: What types of machines do you have? How long has your factory been in this field?
We have more than 10 years of experience in manufacturing Roll Die Cutting Machine, Roll Die Punching Machine, Carton Erecting Machine, Paper Box Forming Machine, Paper Cake Box Machine, Flexo Printing Machine, Cartoning Machine working with listed packaging companies for KFC, Mcdonald’s, Subway, Starbucks.

Q: Where is the factory located?
We are located in Xihu (West Lake) Dis. Town, Xihu (West Lake) Dis.. It takes 10 minutes by car from HangZhou Train Station and 1 hour from HangZhou International Airport.

Q: What Is the machine delivery time? What is the packing way for delivery?
Generally speaking, the CI flexo printing machine could be shipped out within 60-90 days after confirming everything. And it will be packed by flexible packaging with an iron underframe.

Q: How about the machine guarantee?
During 1 year, for any parts damaged caused by the machine-self, the seller will repair/replace the spare parts for free, but the buyer should pay the freight. After 1 year, the seller will supply the spare parts to buyers at the cost. The machine service is all around the machine life.

 QHow about after-sales?
Based on our strong after-sales team and rich experience, we can resolve most of the problems online by video call, messages, and e-mail.

Q: Does Feida accept customized machines?
Yes, we could design the machine based on the customer’s requirements.

Q: What is Feida’s working time?
24 hours online,  but we will reply to messages from 7:30 am to 00:00 per day.
 

How to Calculate Stiffness, Centering Force, Wear and Fatigue Failure of Spline Couplings

There are various types of spline couplings. These couplings have several important properties. These properties are: Stiffness, Involute splines, Misalignment, Wear and fatigue failure. To understand how these characteristics relate to spline couplings, read this article. It will give you the necessary knowledge to determine which type of coupling best suits your needs. Keeping in mind that spline couplings are usually spherical in shape, they are made of steel.
splineshaft

Involute splines

An effective side interference condition minimizes gear misalignment. When 2 splines are coupled with no spline misalignment, the maximum tensile root stress shifts to the left by 5 mm. A linear lead variation, which results from multiple connections along the length of the spline contact, increases the effective clearance or interference by a given percentage. This type of misalignment is undesirable for coupling high-speed equipment.
Involute splines are often used in gearboxes. These splines transmit high torque, and are better able to distribute load among multiple teeth throughout the coupling circumference. The involute profile and lead errors are related to the spacing between spline teeth and keyways. For coupling applications, industry practices use splines with 25 to 50-percent of spline teeth engaged. This load distribution is more uniform than that of conventional single-key couplings.
To determine the optimal tooth engagement for an involved spline coupling, Xiangzhen Xue and colleagues used a computer model to simulate the stress applied to the splines. The results from this study showed that a “permissible” Ruiz parameter should be used in coupling. By predicting the amount of wear and tear on a crowned spline, the researchers could accurately predict how much damage the components will sustain during the coupling process.
There are several ways to determine the optimal pressure angle for an involute spline. Involute splines are commonly measured using a pressure angle of 30 degrees. Similar to gears, involute splines are typically tested through a measurement over pins. This involves inserting specific-sized wires between gear teeth and measuring the distance between them. This method can tell whether the gear has a proper tooth profile.
The spline system shown in Figure 1 illustrates a vibration model. This simulation allows the user to understand how involute splines are used in coupling. The vibration model shows 4 concentrated mass blocks that represent the prime mover, the internal spline, and the load. It is important to note that the meshing deformation function represents the forces acting on these 3 components.
splineshaft

Stiffness of coupling

The calculation of stiffness of a spline coupling involves the measurement of its tooth engagement. In the following, we analyze the stiffness of a spline coupling with various types of teeth using 2 different methods. Direct inversion and blockwise inversion both reduce CPU time for stiffness calculation. However, they require evaluation submatrices. Here, we discuss the differences between these 2 methods.
The analytical model for spline couplings is derived in the second section. In the third section, the calculation process is explained in detail. We then validate this model against the FE method. Finally, we discuss the influence of stiffness nonlinearity on the rotor dynamics. Finally, we discuss the advantages and disadvantages of each method. We present a simple yet effective method for estimating the lateral stiffness of spline couplings.
The numerical calculation of the spline coupling is based on the semi-analytical spline load distribution model. This method involves refined contact grids and updating the compliance matrix at each iteration. Hence, it consumes significant computational time. Further, it is difficult to apply this method to the dynamic analysis of a rotor. This method has its own limitations and should be used only when the spline coupling is fully investigated.
The meshing force is the force generated by a misaligned spline coupling. It is related to the spline thickness and the transmitting torque of the rotor. The meshing force is also related to the dynamic vibration displacement. The result obtained from the meshing force analysis is given in Figures 7, 8, and 9.
The analysis presented in this paper aims to investigate the stiffness of spline couplings with a misaligned spline. Although the results of previous studies were accurate, some issues remained. For example, the misalignment of the spline may cause contact damages. The aim of this article is to investigate the problems associated with misaligned spline couplings and propose an analytical approach for estimating the contact pressure in a spline connection. We also compare our results to those obtained by pure numerical approaches.

Misalignment

To determine the centering force, the effective pressure angle must be known. Using the effective pressure angle, the centering force is calculated based on the maximum axial and radial loads and updated Dudley misalignment factors. The centering force is the maximum axial force that can be transmitted by friction. Several published misalignment factors are also included in the calculation. A new method is presented in this paper that considers the cam effect in the normal force.
In this new method, the stiffness along the spline joint can be integrated to obtain a global stiffness that is applicable to torsional vibration analysis. The stiffness of bearings can also be calculated at given levels of misalignment, allowing for accurate estimation of bearing dimensions. It is advisable to check the stiffness of bearings at all times to ensure that they are properly sized and aligned.
A misalignment in a spline coupling can result in wear or even failure. This is caused by an incorrectly aligned pitch profile. This problem is often overlooked, as the teeth are in contact throughout the involute profile. This causes the load to not be evenly distributed along the contact line. Consequently, it is important to consider the effect of misalignment on the contact force on the teeth of the spline coupling.
The centre of the male spline in Figure 2 is superposed on the female spline. The alignment meshing distances are also identical. Hence, the meshing force curves will change according to the dynamic vibration displacement. It is necessary to know the parameters of a spline coupling before implementing it. In this paper, the model for misalignment is presented for spline couplings and the related parameters.
Using a self-made spline coupling test rig, the effects of misalignment on a spline coupling are studied. In contrast to the typical spline coupling, misalignment in a spline coupling causes fretting wear at a specific position on the tooth surface. This is a leading cause of failure in these types of couplings.
splineshaft

Wear and fatigue failure

The failure of a spline coupling due to wear and fatigue is determined by the first occurrence of tooth wear and shaft misalignment. Standard design methods do not account for wear damage and assess the fatigue life with big approximations. Experimental investigations have been conducted to assess wear and fatigue damage in spline couplings. The tests were conducted on a dedicated test rig and special device connected to a standard fatigue machine. The working parameters such as torque, misalignment angle, and axial distance have been varied in order to measure fatigue damage. Over dimensioning has also been assessed.
During fatigue and wear, mechanical sliding takes place between the external and internal splines and results in catastrophic failure. The lack of literature on the wear and fatigue of spline couplings in aero-engines may be due to the lack of data on the coupling’s application. Wear and fatigue failure in splines depends on a number of factors, including the material pair, geometry, and lubrication conditions.
The analysis of spline couplings shows that over-dimensioning is common and leads to different damages in the system. Some of the major damages are wear, fretting, corrosion, and teeth fatigue. Noise problems have also been observed in industrial settings. However, it is difficult to evaluate the contact behavior of spline couplings, and numerical simulations are often hampered by the use of specific codes and the boundary element method.
The failure of a spline gear coupling was caused by fatigue, and the fracture initiated at the bottom corner radius of the keyway. The keyway and splines had been overloaded beyond their yield strength, and significant yielding was observed in the spline gear teeth. A fracture ring of non-standard alloy steel exhibited a sharp corner radius, which was a significant stress raiser.
Several components were studied to determine their life span. These components include the spline shaft, the sealing bolt, and the graphite ring. Each of these components has its own set of design parameters. However, there are similarities in the distributions of these components. Wear and fatigue failure of spline couplings can be attributed to a combination of the 3 factors. A failure mode is often defined as a non-linear distribution of stresses and strains.

China high quality Hot High Speed Stacking Gear Drive 4 Color T-Shirt Plastic Bag Flexo Printing Machine for Sale Price   near me manufacturer China high quality Hot High Speed Stacking Gear Drive 4 Color T-Shirt Plastic Bag Flexo Printing Machine for Sale Price   near me manufacturer

China high quality PPGI PPGL Chain Drive Pre-Cutting Automatic Galvanized Steel C/Z Purlin Roll Forming Machine Factory Price with ISO9001/Ce/SGS/Soncap near me manufacturer

Product Description

Factory Lifetime Service! 

PPGI PPGL Chain Drive Pre-Cutting Automatic Galvanized Steel C/Z Purlin Roll Forming Machine Factory Price with ISO9
Website:cnzhongyuan
Factory Address:No. 228 Yongli, HangZhou Street, Xihu (West Lake) Dis. District, HangZhou, ZHangZhoug, China

 

Screw Shaft Types and Uses

Various uses for the screw shaft are numerous. Its major diameter is the most significant characteristic, while other aspects include material and function are important. Let us explore these topics in more detail. There are many different types of screw shafts, which include bronze, brass, titanium, and stainless steel. Read on to learn about the most common types. Listed below are some of the most common uses for a screw shaft. These include: C-clamps, screw jacks, vises, and more.
screwshaft

Major diameter of a screw shaft

A screw’s major diameter is measured in fractions of an inch. This measurement is commonly found on the screw label. A screw with a major diameter less than 1/4″ is labeled #0 to #14; those with a larger diameter are labeled fractions of an inch in a corresponding decimal scale. The length of a screw, also known as the shaft, is another measure used for the screw.
The major diameter of a screw shaft is the greater of its 2 outer diameters. When determining the major diameter of a screw, use a caliper, micrometer, or steel rule to make an accurate measurement. Generally, the first number in the thread designation refers to the major diameter. Therefore, if a screw has a thread of 1/2-10 Acme, the major diameter of the thread is.500 inches. The major diameter of the screw shaft will be smaller or larger than the original diameter, so it’s a good idea to measure the section of the screw that’s least used.
Another important measurement is the pitch. This measures the distance between 1 thread’s tip and the next thread’s corresponding point. Pitch is an important measurement because it refers to the distance a screw will advance in 1 turn. While lead and pitch are 2 separate concepts, they are often used interchangeably. As such, it’s important to know how to use them properly. This will make it easier to understand how to select the correct screw.
There are 3 different types of threads. The UTS and ISO metric threads are similar, but their common values for Dmaj and Pmaj are different. A screw’s major diameter is the largest diameter, while the minor diameter is the lowest. A nut’s major diameter, or the minor diameter, is also called the nut’s inside diameter. A bolt’s major diameter and minor diameter are measured with go/no-go gauges or by using an optical comparator.
The British Association and American Society of Mechanical Engineers standardized screw threads in the 1840s. A standard named “British Standard Whitworth” became a common standard for screw threads in the United States through the 1860s. In 1864, William Sellers proposed a new standard that simplified the Whitworth thread and had a 55 degree angle at the tip. Both standards were widely accepted. The major diameter of a screw shaft can vary from 1 manufacturer to another, so it’s important to know what size screw you’re looking for.
In addition to the thread angle, a screw’s major diameter determines the features it has and how it should be used. A screw’s point, or “thread”, is usually spiky and used to drill into an object. A flat tipped screw, on the other hand, is flat and requires a pre-drilled hole for installation. Finally, the diameter of a screw bolt is determined by the major and minor diameters.
screwshaft

Material of a screw shaft

A screw shaft is a piece of machine equipment used to move raw materials. The screw shaft typically comprises a raw material w. For a particular screw to function correctly, the raw material must be sized properly. In general, screw shafts should have an axial-direction length L equal to the moving amount k per 1/2 rotation of the screw. The screw shaft must also have a proper contact angle ph1 in order to prevent raw material from penetrating the screw shaft.
The material used for the shaft depends on its application. A screw with a ball bearing will work better with a steel shaft than 1 made of aluminum. Aluminum screw shafts are the most commonly used for this application. Other materials include titanium. Some manufacturers also prefer stainless steel. However, if you want a screw with a more modern appearance, a titanium shaft is the way to go. In addition to that, screws with a chromium finish have better wear resistance.
The material of a screw shaft is important for a variety of applications. It needs to have high precision threads and ridges to perform its function. Manufacturers often use high-precision CNC machines and lathes to create screw shafts. Different screw shafts can have varying sizes and shapes, and each 1 will have different applications. Listed below are the different materials used for screw shafts. If you’re looking for a high-quality screw shaft, you should shop around.
A lead screw has an inverse relationship between contact surface pressure and sliding velocity. For heavier axial loads, a reduced rotation speed is needed. This curve will vary depending on the material used for the screw shaft and its lubrication conditions. Another important factor is end fixity. The material of a screw shaft can be either fixed or free, so make sure to consider this factor when choosing the material of your screw. The latter can also influence the critical speed and rigidity of the screw.
A screw shaft’s major diameter is the distance between the outer edge of the thread and the inner smooth part. Screw shafts are typically between 2 and 16 millimeters in diameter. They feature a cylindrical shape, a pointy tip, and a wider head and drive than the former. There are 2 basic types of screw heads: threaded and non-threaded. These have different properties and purposes.
Lead screws are a cost-effective alternative to ball screws, and are used for low power and light to medium-duty applications. They offer some advantages, but are not recommended for continuous power transmission. But lead screws are often quieter and smaller, which make them useful for many applications. Besides, they are often used in a kinematic pair with a nut object. They are also used to position objects.
screwshaft

Function of a screw shaft

When choosing a screw for a linear motion system, there are many factors that should be considered, such as the position of the actuator and the screw and nut selection. Other considerations include the overall length of travel, the fastest move profile, the duty cycle, and the repeatability of the system. As a result, screw technology plays a critical role in the overall performance of a system. Here are the key factors to consider when choosing a screw.
Screws are designed with an external threading that digs out material from a surface or object. Not all screw shafts have complete threading, however. These are known as partially threaded screws. Fully threaded screws feature complete external threading on the shaft and a pointed tip. In addition to their use as fasteners, they can be used to secure and tighten many different types of objects and appliances.
Another factor to consider is axial force. The higher the force, the bigger the screw needs to be. Moreover, screws are similar to columns that are subject to both tension and compression loads. During the compression load, bowing or deflection is not desirable, so the integrity of the screw is important. So, consider the design considerations of your screw shaft and choose accordingly. You can also increase the torque by using different shaft sizes.
Shaft collars are also an important consideration. These are used to secure and position components on the shaft. They also act as stroke limiters and to retain sprocket hubs, bearings, and shaft protectors. They are available in several different styles. In addition to single and double split shaft collars, they can be threaded or set screw. To ensure that a screw collar will fit tightly to the shaft, the cap must not be overtightened.
Screws can be cylindrical or conical and vary in length and diameter. They feature a thread that mates with a complementary helix in the material being screwed into. A self-tapping screw will create a complementary helix during driving, creating a complementary helix that allows the screw to work with the material. A screw head is also an essential part of a screw, providing gripping power and compression to the screw.
A screw’s pitch and lead are also important parameters to consider. The pitch of the screw is the distance between the crests of the threads, which increases mechanical advantage. If the pitch is too small, vibrations will occur. If the pitch is too small, the screw may cause excessive wear and tear on the machine and void its intended purpose. The screw will be useless if it can’t be adjusted. And if it can’t fit a shaft with the required diameter, then it isn’t a good choice.
Despite being the most common type, there are various types of screws that differ in their functions. For example, a machine screw has a round head, while a truss head has a lower-profile dome. An oval-its point screw is a good choice for situations where the screw needs to be adjusted frequently. Another type is a soft nylon tip, which looks like a Half-dog point. It is used to grip textured or curved surfaces.

China high quality PPGI PPGL Chain Drive Pre-Cutting Automatic Galvanized Steel C/Z Purlin Roll Forming Machine Factory Price with ISO9001/Ce/SGS/Soncap   near me manufacturer China high quality PPGI PPGL Chain Drive Pre-Cutting Automatic Galvanized Steel C/Z Purlin Roll Forming Machine Factory Price with ISO9001/Ce/SGS/Soncap   near me manufacturer

China wholesaler Portable HDD Shredder Hard Drive Shredder Hard Disk Shredder HDD Crusher HDD Recycling Machine with Best Sales

Product Description

Portable HDD shredder Hard drive shredder hard disk shredder HDD crusher HDD recycling machine

1. Product Introduction:

The MX300 hard disk / hard drive shredder adopts special steel and is suitable for shred desktop 3.5 inch ,laptop 2.5 inch and 1.8 inch hard disk ,  It is the new designed especially for shredding all kind of hard disk / hard drive,it`s perfect for office and data destruction.
Each rotary knife has 3 cutting edges, you can continue to use it after 90° rotation when it wear. Each stator knife has 3 cutting edges, you can continue to use it after 180° rotation when it wear.
The wheel gear reduce drive the main shaft, it has the advantages of stable running lower noise and big torque. PLC control system and positive and negative rotation as well as the emergency stop can ensure the machine working safely and stably.

2. Hard Drive Shredder -Special Features:
a).Especially suitable for shredding all kinds of computer/laptop/PC hard drive /hard disk parts,
b).Low rotation rate,low noise and large moment of torsion.
c).Using electrical control security design to ensure the safety of operators.
d).Special designed cutter with high strength and long service life.
e).Can be customized according to customer’s special requests.
f).Equipment is equipped with a trash can be collected after the broken hard disk, centralized recovery processing.
g)The shredder is equipped with overload protection to prevent damage to the machine due to overload.
h).High capacity and stable performance.
 
3. Technical Specification:

Model: MX-300
Rotate speed: 16r/m
Max. feeding size: 170×140(mm)
Output size:Below 20mm
Capacity: 50-60pcs/h(3.5inch HDD)
Max stock volume: 20kg
Overall size: 845x550x1005(LxWxH)
Blades:8pcs ¢165*55*20
Blades material:H12si
Motor: 4 kw,240/380V, single/three phase, 50/60HZ (optional)

4.Item Images

5.Package in plywood box

6.Company Information

7.FAQ

Q: I am a new investor in e waste recycling industry. Could you give us some suggestions of how to choose the suitable equipment?

AWe’d like to provide our CZPT suggestion to you. First please let us know which kind of e waste you want to recycle?and your demand on equipment working ability? It is will be highly appreciated if you can share some images

Q: What is your company’s guarantee policy

A:  All our products come with 1 year warranty. 

 

Q: I want to buy a plant of your machine,but I do not know how to install them and how to 

run the entire line .could you help me ?

 

A:Our senior engineer will make a project drawing for your reference first.

The drawing will point out the machine size/space cost. even the worker numbers suggestion.

Our engineer will help to install the machine personally.

 

Q: What can I do if the machine can not work?

A:  We appreciate that if you can send us a video to show the machine situation .

Our engineer will try to find out the problem and reply you soon. if it can not be solved through our guidance. Our engineer will come to your country and fix the problem personally

(If the machine was broken intentionally. Sorry we will not provide the above sevices )

 

 

Q: How I go to visit your factory?

A: Our factory located at Xihu (West Lake) Dis. County,HangZhou city,ZheJiang Province. We have an office in HangZhou city .We suggest you go to HangZhou city first by plane or railway. We will pick you up and go to factory directly

 

Q:My employees are not skilled at operating such machine,can you help to train them?

A: Sure.That is no problem.

Screw Shaft Types and Uses

Various uses for the screw shaft are numerous. Its major diameter is the most significant characteristic, while other aspects include material and function are important. Let us explore these topics in more detail. There are many different types of screw shafts, which include bronze, brass, titanium, and stainless steel. Read on to learn about the most common types. Listed below are some of the most common uses for a screw shaft. These include: C-clamps, screw jacks, vises, and more.
screwshaft

Major diameter of a screw shaft

A screw’s major diameter is measured in fractions of an inch. This measurement is commonly found on the screw label. A screw with a major diameter less than 1/4″ is labeled #0 to #14; those with a larger diameter are labeled fractions of an inch in a corresponding decimal scale. The length of a screw, also known as the shaft, is another measure used for the screw.
The major diameter of a screw shaft is the greater of its 2 outer diameters. When determining the major diameter of a screw, use a caliper, micrometer, or steel rule to make an accurate measurement. Generally, the first number in the thread designation refers to the major diameter. Therefore, if a screw has a thread of 1/2-10 Acme, the major diameter of the thread is.500 inches. The major diameter of the screw shaft will be smaller or larger than the original diameter, so it’s a good idea to measure the section of the screw that’s least used.
Another important measurement is the pitch. This measures the distance between 1 thread’s tip and the next thread’s corresponding point. Pitch is an important measurement because it refers to the distance a screw will advance in 1 turn. While lead and pitch are 2 separate concepts, they are often used interchangeably. As such, it’s important to know how to use them properly. This will make it easier to understand how to select the correct screw.
There are 3 different types of threads. The UTS and ISO metric threads are similar, but their common values for Dmaj and Pmaj are different. A screw’s major diameter is the largest diameter, while the minor diameter is the lowest. A nut’s major diameter, or the minor diameter, is also called the nut’s inside diameter. A bolt’s major diameter and minor diameter are measured with go/no-go gauges or by using an optical comparator.
The British Association and American Society of Mechanical Engineers standardized screw threads in the 1840s. A standard named “British Standard Whitworth” became a common standard for screw threads in the United States through the 1860s. In 1864, William Sellers proposed a new standard that simplified the Whitworth thread and had a 55 degree angle at the tip. Both standards were widely accepted. The major diameter of a screw shaft can vary from 1 manufacturer to another, so it’s important to know what size screw you’re looking for.
In addition to the thread angle, a screw’s major diameter determines the features it has and how it should be used. A screw’s point, or “thread”, is usually spiky and used to drill into an object. A flat tipped screw, on the other hand, is flat and requires a pre-drilled hole for installation. Finally, the diameter of a screw bolt is determined by the major and minor diameters.
screwshaft

Material of a screw shaft

A screw shaft is a piece of machine equipment used to move raw materials. The screw shaft typically comprises a raw material w. For a particular screw to function correctly, the raw material must be sized properly. In general, screw shafts should have an axial-direction length L equal to the moving amount k per 1/2 rotation of the screw. The screw shaft must also have a proper contact angle ph1 in order to prevent raw material from penetrating the screw shaft.
The material used for the shaft depends on its application. A screw with a ball bearing will work better with a steel shaft than 1 made of aluminum. Aluminum screw shafts are the most commonly used for this application. Other materials include titanium. Some manufacturers also prefer stainless steel. However, if you want a screw with a more modern appearance, a titanium shaft is the way to go. In addition to that, screws with a chromium finish have better wear resistance.
The material of a screw shaft is important for a variety of applications. It needs to have high precision threads and ridges to perform its function. Manufacturers often use high-precision CNC machines and lathes to create screw shafts. Different screw shafts can have varying sizes and shapes, and each 1 will have different applications. Listed below are the different materials used for screw shafts. If you’re looking for a high-quality screw shaft, you should shop around.
A lead screw has an inverse relationship between contact surface pressure and sliding velocity. For heavier axial loads, a reduced rotation speed is needed. This curve will vary depending on the material used for the screw shaft and its lubrication conditions. Another important factor is end fixity. The material of a screw shaft can be either fixed or free, so make sure to consider this factor when choosing the material of your screw. The latter can also influence the critical speed and rigidity of the screw.
A screw shaft’s major diameter is the distance between the outer edge of the thread and the inner smooth part. Screw shafts are typically between 2 and 16 millimeters in diameter. They feature a cylindrical shape, a pointy tip, and a wider head and drive than the former. There are 2 basic types of screw heads: threaded and non-threaded. These have different properties and purposes.
Lead screws are a cost-effective alternative to ball screws, and are used for low power and light to medium-duty applications. They offer some advantages, but are not recommended for continuous power transmission. But lead screws are often quieter and smaller, which make them useful for many applications. Besides, they are often used in a kinematic pair with a nut object. They are also used to position objects.
screwshaft

Function of a screw shaft

When choosing a screw for a linear motion system, there are many factors that should be considered, such as the position of the actuator and the screw and nut selection. Other considerations include the overall length of travel, the fastest move profile, the duty cycle, and the repeatability of the system. As a result, screw technology plays a critical role in the overall performance of a system. Here are the key factors to consider when choosing a screw.
Screws are designed with an external threading that digs out material from a surface or object. Not all screw shafts have complete threading, however. These are known as partially threaded screws. Fully threaded screws feature complete external threading on the shaft and a pointed tip. In addition to their use as fasteners, they can be used to secure and tighten many different types of objects and appliances.
Another factor to consider is axial force. The higher the force, the bigger the screw needs to be. Moreover, screws are similar to columns that are subject to both tension and compression loads. During the compression load, bowing or deflection is not desirable, so the integrity of the screw is important. So, consider the design considerations of your screw shaft and choose accordingly. You can also increase the torque by using different shaft sizes.
Shaft collars are also an important consideration. These are used to secure and position components on the shaft. They also act as stroke limiters and to retain sprocket hubs, bearings, and shaft protectors. They are available in several different styles. In addition to single and double split shaft collars, they can be threaded or set screw. To ensure that a screw collar will fit tightly to the shaft, the cap must not be overtightened.
Screws can be cylindrical or conical and vary in length and diameter. They feature a thread that mates with a complementary helix in the material being screwed into. A self-tapping screw will create a complementary helix during driving, creating a complementary helix that allows the screw to work with the material. A screw head is also an essential part of a screw, providing gripping power and compression to the screw.
A screw’s pitch and lead are also important parameters to consider. The pitch of the screw is the distance between the crests of the threads, which increases mechanical advantage. If the pitch is too small, vibrations will occur. If the pitch is too small, the screw may cause excessive wear and tear on the machine and void its intended purpose. The screw will be useless if it can’t be adjusted. And if it can’t fit a shaft with the required diameter, then it isn’t a good choice.
Despite being the most common type, there are various types of screws that differ in their functions. For example, a machine screw has a round head, while a truss head has a lower-profile dome. An oval-its point screw is a good choice for situations where the screw needs to be adjusted frequently. Another type is a soft nylon tip, which looks like a Half-dog point. It is used to grip textured or curved surfaces.

China wholesaler Portable HDD Shredder Hard Drive Shredder Hard Disk Shredder HDD Crusher HDD Recycling Machine   with Best SalesChina wholesaler Portable HDD Shredder Hard Drive Shredder Hard Disk Shredder HDD Crusher HDD Recycling Machine   with Best Sales

China Good quality Diesel Drive Shot Blasting Machine Hydraulic Mode with Great quality

Product Description

                                          Diesel Drive Shot Blasting Machine Hydraulic Mode

Product Specification;

        Portable shot blasting machine blasts the pills on the road surface at high speed and certain angle by the method of mechinery , make pills impect the surface of the road and make the road surface roughness, reach the effect of removing residuum,at the same time,dust collector will produce negative pressure to make pills and impurities and dust dust recovery after air cleaning, intact pills will automatically be recycled to used, and impurities and dust will drop into the dust collecting box. 

       Function of road surface blasting once will be enough clear away surface laitance of concrete and remove impurities, and can undertake  hair treatment on the surface of concrete, make its surface well-distributed roughness, greatly improving the adhesive strength of the waterproof layer and concrete base layer, so that the waterproof layer and bridge deck can better combination, and at the same time the crack of concrete can be fully exposed, have the effect of nip in the bud.

Working Principle;

Shot material in the lower part of separation box is from the feeding tube into the blasting  compo nents and driven by the motor. The high-speed rotating shot will be thrown and stroke against the surface of workpieces at the speed of 80m/s. And thus carry out clean-up operation. Under the effect of negative pressure, the shot CZPT and dust will be back into sand separation box where the shot, dust and impurities will be separated completely. Good shot materia into the blast is expected to continue to use.

Product Application;

For floor surface:

    Prepares concrete for recoating or application of overlays
    Removes markings, dirt and old coatings
    Prepares parking lots and garage decks
    Cleans factory and warehouse floors
    Ideal for airport runways
    Used on bridge decks and highways 

For Steel surface:

    Removes paint, rust, mill scale and marine growth
     Cleans ship and decks
     Removes non-skid coatings
     Cleans offshore platforms
     Prepares petroleum and water storage tank surfaces 

For other surfaces:

     Clean brick or stone surface 
     Removes paint pavement markings from asphalt surfaces

Products Technique Parameters

 

Working Effect
 

                   On Concrete                                                                 On Steel

                               Marking Line Removal                                             Epoxy Floor Cleaning                     

 

 

Our Company Information

 We are HangZhou XIHU (WEST LAKE) DIS. MACHINERY CO., LTD.  Located in the machinery manufacture base of HangZhou Seaport (top 10 of world), develop for over 30 years of experience of R&D and sales, pass of ISO 9000 managment system & CE quality certification. As 1 of the leading machinery manufacturers such as: Shot/Sand blasting machine(polish the steel surface rust, strength the steel qulity suit for steel plate, road surface, H beam, outer/inside pipe, oil pipeline casting etc).

Packages and Delivery

 

Our Service

1.Pre-sale services:

Provide the consultation of the equipment. According to the clients’ special requirement, offering the reasonable plan helping to select the equipment.Welcome to visit our factory.

2.Services during the sales:

Inspect the machine before leaving the factory.Oversea install and debug the equipment. Train the first-line operator.

3.After sale services:

Provide technical exchanging and timely problem solving support.

   

If you are interested in this shot blasting machine , 

Please contact us freely.

 

 

What Are Screw Shaft Threads?

A screw shaft is a threaded part used to fasten other components. The threads on a screw shaft are often described by their Coefficient of Friction, which describes how much friction is present between the mating surfaces. This article discusses these characteristics as well as the Material and Helix angle. You’ll have a better understanding of your screw shaft’s threads after reading this article. Here are some examples. Once you understand these details, you’ll be able to select the best screw nut for your needs.
screwshaft

Coefficient of friction between the mating surfaces of a nut and a screw shaft

There are 2 types of friction coefficients. Dynamic friction and static friction. The latter refers to the amount of friction a nut has to resist an opposing motion. In addition to the material strength, a higher coefficient of friction can cause stick-slip. This can lead to intermittent running behavior and loud squeaking. Stick-slip may lead to a malfunctioning plain bearing. Rough shafts can be used to improve this condition.
The 2 types of friction coefficients are related to the applied force. When applying force, the applied force must equal the nut’s pitch diameter. When the screw shaft is tightened, the force may be removed. In the case of a loosening clamp, the applied force is smaller than the bolt’s pitch diameter. Therefore, the higher the property class of the bolt, the lower the coefficient of friction.
In most cases, the screwface coefficient of friction is lower than the nut face. This is because of zinc plating on the joint surface. Moreover, power screws are commonly used in the aerospace industry. Whether or not they are power screws, they are typically made of carbon steel, alloy steel, or stainless steel. They are often used in conjunction with bronze or plastic nuts, which are preferred in higher-duty applications. These screws often require no holding brakes and are extremely easy to use in many applications.
The coefficient of friction between the mating surfaces of t-screws is highly dependent on the material of the screw and the nut. For example, screws with internal lubricated plastic nuts use bearing-grade bronze nuts. These nuts are usually used on carbon steel screws, but can be used with stainless steel screws. In addition to this, they are easy to clean.

Helix angle

In most applications, the helix angle of a screw shaft is an important factor for torque calculation. There are 2 types of helix angle: right and left hand. The right hand screw is usually smaller than the left hand one. The left hand screw is larger than the right hand screw. However, there are some exceptions to the rule. A left hand screw may have a greater helix angle than a right hand screw.
A screw’s helix angle is the angle formed by the helix and the axial line. Although the helix angle is not usually changed, it can have a significant effect on the processing of the screw and the amount of material conveyed. These changes are more common in 2 stage and special mixing screws, and metering screws. These measurements are crucial for determining the helix angle. In most cases, the lead angle is the correct angle when the screw shaft has the right helix angle.
High helix screws have large leads, sometimes up to 6 times the screw diameter. These screws reduce the screw diameter, mass, and inertia, allowing for higher speed and precision. High helix screws are also low-rotation, so they minimize vibrations and audible noises. But the right helix angle is important in any application. You must carefully choose the right type of screw for the job at hand.
If you choose a screw gear that has a helix angle other than parallel, you should select a thrust bearing with a correspondingly large center distance. In the case of a screw gear, a 45-degree helix angle is most common. A helix angle greater than zero degrees is also acceptable. Mixing up helix angles is beneficial because it allows for a variety of center distances and unique applications.
screwshaft

Thread angle

The thread angle of a screw shaft is measured from the base of the head of the screw to the top of the screw’s thread. In America, the standard screw thread angle is 60 degrees. The standard thread angle was not widely adopted until the early twentieth century. A committee was established by the Franklin Institute in 1864 to study screw threads. The committee recommended the Sellers thread, which was modified into the United States Standard Thread. The standardized thread was adopted by the United States Navy in 1868 and was recommended for construction by the Master Car Builders’ Association in 1871.
Generally speaking, the major diameter of a screw’s threads is the outside diameter. The major diameter of a nut is not directly measured, but can be determined with go/no-go gauges. It is necessary to understand the major and minor diameters in relation to each other in order to determine a screw’s thread angle. Once this is known, the next step is to determine how much of a pitch is necessary to ensure a screw’s proper function.
Helix angle and thread angle are 2 different types of angles that affect screw efficiency. For a lead screw, the helix angle is the angle between the helix of the thread and the line perpendicular to the axis of rotation. A lead screw has a greater helix angle than a helical one, but has higher frictional losses. A high-quality lead screw requires a higher torque to rotate. Thread angle and lead angle are complementary angles, but each screw has its own specific advantages.
Screw pitch and TPI have little to do with tolerances, craftsmanship, quality, or cost, but rather the size of a screw’s thread relative to its diameter. Compared to a standard screw, the fine and coarse threads are easier to tighten. The coarser thread is deeper, which results in lower torques. If a screw fails because of torsional shear, it is likely to be a result of a small minor diameter.

Material

Screws have a variety of different sizes, shapes, and materials. They are typically machined on CNC machines and lathes. Each type is used for different purposes. The size and material of a screw shaft are influenced by how it will be used. The following sections give an overview of the main types of screw shafts. Each 1 is designed to perform a specific function. If you have questions about a specific type, contact your local machine shop.
Lead screws are cheaper than ball screws and are used in light-duty, intermittent applications. Lead screws, however, have poor efficiency and are not recommended for continuous power transmission. But, they are effective in vertical applications and are more compact. Lead screws are typically used as a kinematic pair with a ball screw. Some types of lead screws also have self-locking properties. Because they have a low coefficient of friction, they have a compact design and very few parts.
Screws are made of a variety of metals and alloys. Steel is an economical and durable material, but there are also alloy steel and stainless steel types. Bronze nuts are the most common and are often used in higher-duty applications. Plastic nuts provide low-friction, which helps reduce the drive torques. Stainless steel screws are also used in high-performance applications, and may be made of titanium. The materials used to create screw shafts vary, but they all have their specific functions.
Screws are used in a wide range of applications, from industrial and consumer products to transportation equipment. They are used in many different industries, and the materials they’re made of can determine their life. The life of a screw depends on the load that it bears, the design of its internal structure, lubrication, and machining processes. When choosing screw assemblies, look for a screw made from the highest quality steels possible. Usually, the materials are very clean, so they’re a great choice for a screw. However, the presence of imperfections may cause a normal fatigue failure.
screwshaft

Self-locking features

Screws are known to be self-locking by nature. The mechanism for this feature is based on several factors, such as the pitch angle of the threads, material pairing, lubrication, and heating. This feature is only possible if the shaft is subjected to conditions that are not likely to cause the threads to loosen on their own. The self-locking ability of a screw depends on several factors, including the pitch angle of the thread flank and the coefficient of sliding friction between the 2 materials.
One of the most common uses of screws is in a screw top container lid, corkscrew, threaded pipe joint, vise, C-clamp, and screw jack. Other applications of screw shafts include transferring power, but these are often intermittent and low-power operations. Screws are also used to move material in Archimedes’ screw, auger earth drill, screw conveyor, and micrometer.
A common self-locking feature for a screw is the presence of a lead screw. A screw with a low PV value is safe to operate, but a screw with high PV will need a lower rotation speed. Another example is a self-locking screw that does not require lubrication. The PV value is also dependent on the material of the screw’s construction, as well as its lubrication conditions. Finally, a screw’s end fixity – the way the screw is supported – affects the performance and efficiency of a screw.
Lead screws are less expensive and easier to manufacture. They are a good choice for light-weight and intermittent applications. These screws also have self-locking capabilities. They can be self-tightened and require less torque for driving than other types. The advantage of lead screws is their small size and minimal number of parts. They are highly efficient in vertical and intermittent applications. They are not as accurate as lead screws and often have backlash, which is caused by insufficient threads.

China Good quality Diesel Drive Shot Blasting Machine Hydraulic Mode   with Great qualityChina Good quality Diesel Drive Shot Blasting Machine Hydraulic Mode   with Great quality

China Standard Hydraulic Drive Rubber Belt Cutting Machine Bale Cutter Guillotine Cutter near me supplier

Product Description

Hydraulic drive rubber belt cutting machine bale cutter guillotine cutter

rubber belt cutting machine Usage:

This rubber belt cutting machine is mainly used to cut the natural rubber,synthetic rubber and other plastic materials,especially it is suitable to be installed near the rubber mixer to cut small pieces of rubber.

 

Features of rubber belt cutting machine

1.This rubber belt cutting machine cutter mainly consists of cutting knife,frame,cylinder,base,auxiliary table,sydraulic system and electric system.

2.The nylon plate is installed on the base under the cutting knife for protecting the edge of the cutting knife.

3.When cutting the raw rubber,put the raw rubber under the cutting knife,the press the start button,the knife can cut the rubber.

5.Two limited switches are installed on the frame to control the reversal valve to change the movement direction of the knife,at the same time,it protects the cover of the cylinder.

 

rubber belt cutting machine Technical Information:

Type XQL-8 XQL-16
Width (mm) 660 1000
Stroke (mm) 680 680
Diameter of the piston (mm) 150 150
Time Taken by the Stroke (second) 16~25 10~16
Power (KW) 5.5 5.5
Overall Dimension (LxWxH) 1900×720×2580 2240×720×2580
Weight (kg) 1500 2000


Company Introduction

 

HangZhou Evertech Industry Co., Ltd. is a professional pressure vessel designer, manufacturer and exporter. We have manufacturing licenses for ASME U, ASME U2,NB,PED, D1, D2 and A2 pressure vessels. Composed of more than 20 senior experts and professional engineers, the research and development team, with more than 20 years of professional experience, is committed to product design, development and program optimization, and can provide high-quality solutions according to users’ requirements in different operating conditions.  Company has cover an area of 70000 manufacturing base and 15000 modern manufacturing plants, can provide customers both at home and abroad with CZPT autoclave, high pressure autoclave, high pressure reactor, AAC autoclave, deaerator, pouring tank pressure vessel products such as more than 800 sets, pressure vessel head more than 20000 sets high quality products and services, won widespread praise.

 

 Our Service 

♦ Our engineers can design target machines for customers and send them the drawing to confirm. We are always on the side of saving your cost.  
♦ In the process of production, we will take photos and send to customers for their track the progress.  
♦ Documents such as packing list, commercial invoice, and bill of lading etc. will be sent after the delivery.  
♦ We could supply free English foundation DWG, installation drawing, user guide, maintenance manual and part drawing.  
♦ We supply overseas engineer service and help to train your workers to operate the machine.

 

Drive shaft type

The driveshaft transfers torque from the engine to the wheels and is responsible for the smooth running of the vehicle. Its design had to compensate for differences in length and angle. It must also ensure perfect synchronization between its joints. The drive shaft should be made of high-grade materials to achieve the best balance of stiffness and elasticity. There are 3 main types of drive shafts. These include: end yokes, tube yokes and tapered shafts.
air-compressor

tube yoke

Tube yokes are shaft assemblies that use metallic materials as the main structural component. The yoke includes a uniform, substantially uniform wall thickness, a first end and an axially extending second end. The first diameter of the drive shaft is greater than the second diameter, and the yoke further includes a pair of opposing lugs extending from the second end. These lugs have holes at the ends for attaching the axle to the vehicle.
By retrofitting the driveshaft tube end into a tube fork with seat. This valve seat transmits torque to the driveshaft tube. The fillet weld 28 enhances the torque transfer capability of the tube yoke. The yoke is usually made of aluminum alloy or metal material. It is also used to connect the drive shaft to the yoke. Various designs are possible.
The QU40866 tube yoke is used with an external snap ring type universal joint. It has a cup diameter of 1-3/16″ and an overall width of 4½”. U-bolt kits are another option. It has threaded legs and locks to help secure the yoke to the drive shaft. Some performance cars and off-road vehicles use U-bolts. Yokes must be machined to accept U-bolts, and U-bolt kits are often the preferred accessory.
The end yoke is the mechanical part that connects the drive shaft to the stub shaft. These yokes are usually designed for specific drivetrain components and can be customized to your needs. Pat’s drivetrain offers OEM replacement and custom flanged yokes.
If your tractor uses PTO components, the cross and bearing kit is the perfect tool to make the connection. Additionally, cross and bearing kits help you match the correct yoke to the shaft. When choosing a yoke, be sure to measure the outside diameter of the U-joint cap and the inside diameter of the yoke ears. After taking the measurements, consult the cross and bearing identification drawings to make sure they match.
While tube yokes are usually easy to replace, the best results come from a qualified machine shop. Dedicated driveshaft specialists can assemble and balance finished driveshafts. If you are unsure of a particular aspect, please refer to the TM3000 Driveshaft and Cardan Joint Service Manual for more information. You can also consult an excerpt from the TSB3510 manual for information on angle, vibration and runout.
The sliding fork is another important part of the drive shaft. It can bend over rough terrain, allowing the U-joint to keep spinning in tougher conditions. If the slip yoke fails, you will not be able to drive and will clang. You need to replace it as soon as possible to avoid any dangerous driving conditions. So if you notice any dings, be sure to check the yoke.
If you detect any vibrations, the drivetrain may need adjustment. It’s a simple process. First, rotate the driveshaft until you find the correct alignment between the tube yoke and the sliding yoke of the rear differential. If there is no noticeable vibration, you can wait for a while to resolve the problem. Keep in mind that it may be convenient to postpone repairs temporarily, but it may cause bigger problems later.
air-compressor

end yoke

If your driveshaft requires a new end yoke, CZPT has several drivetrain options. Our automotive end yoke inventory includes keyed and non-keyed options. If you need tapered or straight holes, we can also make them for you.
A U-bolt is an industrial fastener that has U-shaped threads on its legs. They are often used to join 2 heads back to back. These are convenient options to help keep drivetrain components in place when driving over rough terrain, and are generally compatible with a variety of models. U-bolts require a specially machined yoke to accept them, so be sure to order the correct size.
The sliding fork helps transfer power from the transfer case to the driveshaft. They slide in and out of the transfer case, allowing the u-joint to rotate. Sliding yokes or “slips” can be purchased separately. Whether you need a new 1 or just a few components to upgrade your driveshaft, 4 CZPT Parts will have the parts you need to repair your vehicle.
The end yoke is a necessary part of the drive shaft. It connects the drive train and the mating flange. They are also used in auxiliary power equipment. CZPT’s drivetrains are stocked with a variety of flanged yokes for OEM applications and custom builds. You can also find flanged yokes for constant velocity joints in our extensive inventory. If you don’t want to modify your existing drivetrain, we can even make a custom yoke for you.

China Standard Hydraulic Drive Rubber Belt Cutting Machine Bale Cutter Guillotine Cutter   near me supplier China Standard Hydraulic Drive Rubber Belt Cutting Machine Bale Cutter Guillotine Cutter   near me supplier