China factory CZPT Right Hand Drive Left Hand Drive G7 G9 Guardianship Type and Transport Ambulance Car Trucks with high quality

Product Description

Foton Right Hand Drive left hand drive G7 G9 Guardianship Type and Transport Ambulance car trucks
 

Key Technical Parameter 
Product Name FOTON G9 ambulance
Color  White 
Drive type Right hand drive
Main dimension 
Overall dimension (L×W×H)mm 5380×1920×2480
Medical warehouse size (L×W×H)mm ××
Wheelbase(mm) 3110
Weight data 
GVM(kg)  3400
Kerb weight(kg)  2160
Engine 
Engine Model  4J28TC3 (110HP)
Displacement (CC)  2771
Power 81kw
Fuel type  Diesel 
 Emission standard  EURO V(National 5)
Gearbox
Type  5 speed,5 forward and 1reverse,manual 
Cab 
Cabin  with air conditioner 
Steering  Power steering
Tire 
Tire  215/75R16LT
Tire quantity 4+1

 

Company information

1.  ChengLi Special Automobile Co.,Ltd, which was appointed by the Development and Reform Committee of China, is a famous manufacturer producing all kinds of special trucks for municipal & environmental construction, virescence, petrol & medicals, container, and semi-trailer. Brands registered include CLW .Our company has independent export right and has a mount of clients in overseas. Our leading varieties include more than 100 types of trucks and related products such as water truck, garbage truck,sewage suction truck, fuel tank, high-altitude operation truck, truck mounted crane, dump truck, LED advertising truck,LPG truck/trailer,LPG filling tank, van truck, semi-trailer, fire engine, refrigerator truck, tractor, bulk cement truck, chemical liquid truck, concrete mixer truck, and others. 

2.Our company has solid technology, flawless inspection, advanced equipment, reliable quality and flexible modes of operation. What’s more, our company has roundly passed ISO9001:2000 and CCC (China Compulsory Certification) certifications. Series trucks of Cheng Li have procured remarkable achievements interiorly, especially from the investment in South Suburb Cheng Li Automobile Industry Park.

3.Quality control:our company truck pass ISO,3C,ASME certification.
our factory have the quality Quality Inspection Department.before sending truck for facotry ,our quality inspection department will check the truck carefully.

4. Export market: Africa,Asia,South America,Pacific and so on

5.Our company cooperate with famous chasis manufacturers,such as XIHU (WEST LAKE) DIS.FENG,SHINOTRUK,FOTON, JAC,JMC ,SHACMAN,FAW and etc.

6.Factory Show:

 

Service

1.We can product truck accroding the customer’s requirments(color,size,logo and so on)
2.We can send our technician to arrive the customer’s country to provide the service .
3.We can train customer’s workers for free.
4.Our truck warranty:12 months.we can provide the parts for free at the frist year.

Transport by Sea

 

Success Case Show

Customer Visit

 

FAQ

1.Payment term.
-T/T,30% deposit ,and pay the blance before shippment from our factory
-L/C,L/C price is expensive than T/T price.

2.What about quality ?

Our truck are brand new truck,Our survival is based on quality and credit standing is the guarantee of our success. We will do as we can to treat customers honestly, manage flexibly, guarantee high quality but low price, and keep high efficiency.

our company truck pass ISO,3C,ASME certification.

3.Visit our factory
Our factory are in HangZhou city,ZheJiang province china.
You can take train or plane to arrive HangZhou citry(HangZhou city is the capital of ZheJiang province) .and our driver will pick up you at HangZhou railway station or HangZhou CZPT airport.
And if need the invitation letter ,pls send your private information and company information to me.

 

 

How to Calculate the Diameter of a Worm Gear

worm shaft
In this article, we will discuss the characteristics of the Duplex, Single-throated, and Undercut worm gears and the analysis of worm shaft deflection. Besides that, we will explore how the diameter of a worm gear is calculated. If you have any doubt about the function of a worm gear, you can refer to the table below. Also, keep in mind that a worm gear has several important parameters which determine its working.

Duplex worm gear

A duplex worm gear set is distinguished by its ability to maintain precise angles and high gear ratios. The backlash of the gearing can be readjusted several times. The axial position of the worm shaft can be determined by adjusting screws on the housing cover. This feature allows for low backlash engagement of the worm tooth pitch with the worm gear. This feature is especially beneficial when backlash is a critical factor when selecting gears.
The standard worm gear shaft requires less lubrication than its dual counterpart. Worm gears are difficult to lubricate because they are sliding rather than rotating. They also have fewer moving parts and fewer points of failure. The disadvantage of a worm gear is that you cannot reverse the direction of power due to friction between the worm and the wheel. Because of this, they are best used in machines that operate at low speeds.
Worm wheels have teeth that form a helix. This helix produces axial thrust forces, depending on the hand of the helix and the direction of rotation. To handle these forces, the worms should be mounted securely using dowel pins, step shafts, and dowel pins. To prevent the worm from shifting, the worm wheel axis must be aligned with the center of the worm wheel’s face width.
The backlash of the CZPT duplex worm gear is adjustable. By shifting the worm axially, the section of the worm with the desired tooth thickness is in contact with the wheel. As a result, the backlash is adjustable. Worm gears are an excellent choice for rotary tables, high-precision reversing applications, and ultra-low-backlash gearboxes. Axial shift backlash is a major advantage of duplex worm gears, and this feature translates into a simple and fast assembly process.
When choosing a gear set, the size and lubrication process will be crucial. If you’re not careful, you might end up with a damaged gear or 1 with improper backlash. Luckily, there are some simple ways to maintain the proper tooth contact and backlash of your worm gears, ensuring long-term reliability and performance. As with any gear set, proper lubrication will ensure your worm gears last for years to come.
worm shaft

Single-throated worm gear

Worm gears mesh by sliding and rolling motions, but sliding contact dominates at high reduction ratios. Worm gears’ efficiency is limited by the friction and heat generated during sliding, so lubrication is necessary to maintain optimal efficiency. The worm and gear are usually made of dissimilar metals, such as phosphor-bronze or hardened steel. MC nylon, a synthetic engineering plastic, is often used for the shaft.
Worm gears are highly efficient in transmission of power and are adaptable to various types of machinery and devices. Their low output speed and high torque make them a popular choice for power transmission. A single-throated worm gear is easy to assemble and lock. A double-throated worm gear requires 2 shafts, 1 for each worm gear. Both styles are efficient in high-torque applications.
Worm gears are widely used in power transmission applications because of their low speed and compact design. A numerical model was developed to calculate the quasi-static load sharing between gears and mating surfaces. The influence coefficient method allows fast computing of the deformation of the gear surface and local contact of the mating surfaces. The resultant analysis shows that a single-throated worm gear can reduce the amount of energy required to drive an electric motor.
In addition to the wear caused by friction, a worm wheel can experience additional wear. Because the worm wheel is softer than the worm, most of the wear occurs on the wheel. In fact, the number of teeth on a worm wheel should not match its thread count. A single-throated worm gear shaft can increase the efficiency of a machine by as much as 35%. In addition, it can lower the cost of running.
A worm gear is used when the diametrical pitch of the worm wheel and worm gear are the same. If the diametrical pitch of both gears is the same, the 2 worms will mesh properly. In addition, the worm wheel and worm will be attached to each other with a set screw. This screw is inserted into the hub and then secured with a locknut.

Undercut worm gear

Undercut worm gears have a cylindrical shaft, and their teeth are shaped in an evolution-like pattern. Worms are made of a hardened cemented metal, 16MnCr5. The number of gear teeth is determined by the pressure angle at the zero gearing correction. The teeth are convex in normal and centre-line sections. The diameter of the worm is determined by the worm’s tangential profile, d1. Undercut worm gears are used when the number of teeth in the cylinder is large, and when the shaft is rigid enough to resist excessive load.
The center-line distance of the worm gears is the distance from the worm centre to the outer diameter. This distance affects the worm’s deflection and its safety. Enter a specific value for the bearing distance. Then, the software proposes a range of suitable solutions based on the number of teeth and the module. The table of solutions contains various options, and the selected variant is transferred to the main calculation.
A pressure-angle-angle-compensated worm can be manufactured using single-pointed lathe tools or end mills. The worm’s diameter and depth are influenced by the cutter used. In addition, the diameter of the grinding wheel determines the profile of the worm. If the worm is cut too deep, it will result in undercutting. Despite the undercutting risk, the design of worm gearing is flexible and allows considerable freedom.
The reduction ratio of a worm gear is massive. With only a little effort, the worm gear can significantly reduce speed and torque. In contrast, conventional gear sets need to make multiple reductions to get the same reduction level. Worm gears also have several disadvantages. Worm gears can’t reverse the direction of power because the friction between the worm and the wheel makes this impossible. The worm gear can’t reverse the direction of power, but the worm moves from 1 direction to another.
The process of undercutting is closely related to the profile of the worm. The worm’s profile will vary depending on the worm diameter, lead angle, and grinding wheel diameter. The worm’s profile will change if the generating process has removed material from the tooth base. A small undercut reduces tooth strength and reduces contact. For smaller gears, a minimum of 14-1/2degPA gears should be used.
worm shaft

Analysis of worm shaft deflection

To analyze the worm shaft deflection, we first derived its maximum deflection value. The deflection is calculated using the Euler-Bernoulli method and Timoshenko shear deformation. Then, we calculated the moment of inertia and the area of the transverse section using CAD software. In our analysis, we used the results of the test to compare the resulting parameters with the theoretical ones.
We can use the resulting centre-line distance and worm gear tooth profiles to calculate the required worm deflection. Using these values, we can use the worm gear deflection analysis to ensure the correct bearing size and worm gear teeth. Once we have these values, we can transfer them to the main calculation. Then, we can calculate the worm deflection and its safety. Then, we enter the values into the appropriate tables, and the resulting solutions are automatically transferred into the main calculation. However, we have to keep in mind that the deflection value will not be considered safe if it is larger than the worm gear’s outer diameter.
We use a four-stage process for investigating worm shaft deflection. We first apply the finite element method to compute the deflection and compare the simulation results with the experimentally tested worm shafts. Finally, we perform parameter studies with 15 worm gear toothings without considering the shaft geometry. This step is the first of 4 stages of the investigation. Once we have calculated the deflection, we can use the simulation results to determine the parameters needed to optimize the design.
Using a calculation system to calculate worm shaft deflection, we can determine the efficiency of worm gears. There are several parameters to optimize gearing efficiency, including material and geometry, and lubricant. In addition, we can reduce the bearing losses, which are caused by bearing failures. We can also identify the supporting method for the worm shafts in the options menu. The theoretical section provides further information.

China factory CZPT Right Hand Drive Left Hand Drive G7 G9 Guardianship Type and Transport Ambulance Car Trucks   with high qualityChina factory CZPT Right Hand Drive Left Hand Drive G7 G9 Guardianship Type and Transport Ambulance Car Trucks   with high quality